%I M4860 #25 Dec 15 2019 08:37:31
%S 1,12,114,1012,8775,75516,649264,5593068,48336171,419276660,
%T 3650774820,31907617560,279871768995,2463161027292,21747225841440,
%U 192575673551584,1710009515037060,15223466050169520,135853465827080970,1215067013768834100
%N From generalized Catalan numbers.
%D H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Simon Plouffe, <a href="http://arxiv.org/abs/0911.4975">Approximations of generating functions and a few conjectures</a>, Master's Thesis, UQAM 1992; arXiv:0911.4975 [math.NT], 2009.
%F 4F3([3,7/2,15/4,13/4],[5,14/3,13/3],256*x/27) - _Simon Plouffe_, Master's thesis, UQAM 1992
%F G.f.: g^12 where g is the g.f. of A002293. - _Sean A. Irvine_, May 25 2017
%t terms = 20; g[_] = 0; Do[g[x_] = 1 + x g[x]^4 + O[x]^terms, terms];
%t CoefficientList[g[x]^12, x] (* _Jean-François Alcover_, Oct 07 2018, after _Sean A. Irvine_ *)
%K nonn
%O 0,2
%A _Simon Plouffe_
%E More terms from _Sean A. Irvine_, May 25 2017