login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = binomial(n,3)*binomial(n-1,3)/4.
(Formerly M4707)
29

%I M4707 #129 Jan 07 2025 12:57:32

%S 1,10,50,175,490,1176,2520,4950,9075,15730,26026,41405,63700,95200,

%T 138720,197676,276165,379050,512050,681835,896126,1163800,1495000,

%U 1901250,2395575,2992626,3708810,4562425,5573800,6765440,8162176,9791320,11682825,13869450

%N a(n) = binomial(n,3)*binomial(n-1,3)/4.

%C Number of permutations of n+4 that avoid the pattern 132 and have exactly 3 descents. - _Mike Zabrocki_, Aug 26 2004

%C Kekulé numbers for certain benzenoids. - _Emeric Deutsch_, Jun 20 2005

%C a(n) = number of Dyck n-paths with exactly 4 peaks. - _David Callan_, Jul 03 2006

%C Six-dimensional figurate numbers for a hyperpyramid with pentagonal base. This corresponds to the sum(sum(sum(sum(1+sum(5*n))))) interpretation, see the Munafo webpage. - _Robert Munafo_, Jun 18 2009

%D S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 166, no. 1).

%D S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 238.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A006542/b006542.txt">Table of n, a(n) for n = 4..200</a>

%H Isaac Ahern and Sam Cook, <a href="https://doi.org/10.33697/ajur.2016.024">Affine Symmetry Tensors in Minkowski Space</a>, American Journal of Undergraduate Research, Volume 13, Issue 3, August 2016.

%H P. Aluffi, <a href="http://arxiv.org/abs/1408.1702">Degrees of projections of rank loci</a>, arXiv:1408.1702 [math.AG], 2014. ["After compiling the results of many explicit computations, we noticed that many of the numbers d_{n,r,S} appear in the existing literature in contexts far removed from the enumerative geometry of rank conditions; we owe this surprising (to us) observation to perusal of [Slo14]."]

%H Brandy Amanda Barnette, <a href="http://digitalcommons.wku.edu/theses/1484">Counting Convex Sets on Products of Totally Ordered Sets</a>, Masters Theses & Specialist Projects, Paper 1484, 2015.

%H V. E. Hoggatt, Jr., <a href="/A006542/a006542.pdf">Letter to N. J. A. Sloane, Apr 1977</a>

%H G. Kreweras, <a href="http://www.numdam.org/item?id=BURO_1967__10__23_0">Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb"</a>, Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31.

%H G. Kreweras, <a href="/A006542/a006542_1.pdf">Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb"</a>, Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31. [Annotated scanned copy]

%H Feihu Liu, Guoce Xin, and Chen Zhang, <a href="https://arxiv.org/abs/2412.18744">Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS</a>, arXiv:2412.18744 [math.CO], 2024. See pp. 6, 25.

%H Robert Munafo, <a href="http://mrob.com/pub/math/seq-a006542.html">C(n,3)C(n-1,3)/4</a>

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).

%F a(n) = C(n, 3)*C(n-1, 3)/4 = n*(n-1)^2*(n-2)^2*(n-3)/144.

%F a(n) = A000292(n-3)*A000292(n-2)/4.

%F E.g.f.: x^4*(6 + 6*x + x^2)*exp(x)/144. - _Vladeta Jovovic_, Jan 29 2003

%F a(n) = Sum(Sum(Sum(Sum(1 + Sum(5*n))))) = Sum (A006414). - Xavier Acloque, Oct 08 2003

%F a(n) = C(n, 6) + 3*C(n+1, 6) + C(n+2, 6). - _Mike Zabrocki_, Aug 26 2004

%F G.f.: x^4*(1 + 3*x + x^2)/(1-x)^7. - _Emeric Deutsch_, Jun 20 2005

%F a(n) = C(n-2, n-4)*C(n-1, n-3)*C(n, n-2)/18. - _Zerinvary Lajos_, Jul 29 2005

%F a(n) = C(n,4)*C(n,3)/n. - _Mitch Harris_, Jul 06 2006

%F a(n+2) = (1/4)*Sum_{1 <= x_1, x_2 <= n} x_1*x_2*(det V(x_1,x_2))^2 = (1/4)*Sum_{1 <= i,j <= n} i*j*(i-j)^2, where V(x_1,x_2) is the Vandermonde matrix of order 2. - _Peter Bala_, Sep 21 2007

%F a(n) = C(n-1,3)^2 - C(n-1,2)*C(n-1,4). - _Gary Detlefs_, Dec 05 2011

%F a(n) = A000292(A000217(n-1)) - A000217(A000292(n-1)). - _Ivan N. Ianakiev_, Jun 17 2014

%F a(n) = Product_{i=1..3} A002378(n-4+i)/A002378(i). - _Bruno Berselli_, Nov 12 2014 (Rewritten, Sep 01 2016.)

%F Sum_{n>=4} 1/a(n) = 238 - 24*Pi^2. - _Jaume Oliver Lafont_, Jul 10 2017

%F Sum_{n>=4} (-1)^n/a(n) = 134 - 192*log(2). - _Amiram Eldar_, Oct 19 2020

%F a(n) = A000332(n) + 5*A000579(n+1). - _Yasser Arath Chavez Reyes_, Aug 18 2024

%p A006542:=-(1+3*z+z**2)/(z-1)**7; # conjectured by _Simon Plouffe_ in his 1992 dissertation

%p A006542:=n->n*((n-1)*(n-2))^2*(n-3)/144; seq(A006542(n), n=4..40); # _Wesley Ivan Hurt_, Jun 17 2014

%t Table[Binomial[n, 3]*Binomial[n-1, 3]/4, {n, 4, 40}]

%o (PARI) a(n)=n*((n-1)*(n-2))^2*(n-3)/144

%o (Magma) [ n*((n-1)*(n-2))^2*(n-3)/144 : n in [4..40] ]; // _Wesley Ivan Hurt_, Jun 17 2014

%o (Sage) [n*(n-1)^2*(n-2)^2*(n-3)/144 for n in (4..40)] # _G. C. Greubel_, Feb 24 2019

%o (GAP) List([4..40], n-> n*(n-1)^2*(n-2)^2*(n-3)/144); # _G. C. Greubel_, Feb 24 2019

%Y The expression binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1) for the values m = 2 through 14 produces the sequences A000012, A000217, A002415, A006542, A006857, A108679, A134288, A134289, A134290, A134291, A140925, A140935, A169937.

%Y Cf. A000332, A000579, A001263, A002378, A004068, A005585, A005891, A006322, A006414, A047819, A107891, A114242.

%Y Fourth column of the table of Narayana numbers A001263.

%Y Apart from a scale factor, a column of A124428.

%K nonn,easy,changed

%O 4,2

%A _N. J. A. Sloane_

%E Zabroki and Lajos formulas offset corrected by _Gary Detlefs_, Dec 05 2011