Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4789 #71 Sep 22 2023 12:20:07
%S 1,0,0,1,1,1,11,36,92,491,2557,11353,60105,362506,2169246,13580815,
%T 91927435,650078097,4762023647,36508923530,292117087090,2424048335917,
%U 20847410586719,185754044235873,1711253808769653,16272637428430152
%N Number of partitions of an n-set into boxes of size >2.
%D J. Riordan, A budget of rhyme scheme counts, pp. 455 - 465 of Second International Conference on Combinatorial Mathematics, New York, April 4-7, 1978. Edited by Allan Gewirtz and Louis V. Quintas. Annals New York Academy of Sciences, 319, 1979.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Seiichi Manyama, <a href="/A006505/b006505.txt">Table of n, a(n) for n = 0..579</a> (terms 0..250 from Alois P. Heinz)
%H E. A. Enneking and J. C. Ahuja, <a href="http://www.fq.math.ca/Scanned/14-1/enneking.pdf">Generalized Bell numbers</a>, Fib. Quart., 14 (1976), 67-73.
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=102">Encyclopedia of Combinatorial Structures 102</a>
%H Vladimir Victorovich Kruchinin, <a href="http://arxiv.org/abs/1009.2565">Composition of ordinary generating functions</a>, arXiv:1009.2565 [math.CO], 2010.
%H I. Mezo, <a href="http://arxiv.org/abs/1308.1637">Periodicity of the last digits of some combinatorial sequences</a>, arXiv preprint arXiv:1308.1637 [math.CO], 2013.
%H J. Riordan, <a href="/A005000/a005000.pdf">Cached copy of paper</a> [With permission]
%F E.g.f.: exp ( exp x - 1 - x - (1/2)*x^2 ).
%F a(n) = Sum_{k=1..[n/3]} A059022(n,k), n>=3. - _R. J. Mathar_, Nov 08 2008
%F a(n) = n! * sum(m=1..n, sum(k=0..m, k!*(-1)^(m-k) *binomial(m,k) *sum(i=0..n-m, stirling2(i+k,k) *binomial(m-k,n-m-i) *2^(-n+m+i)/ (i+k)!))/m!); a(0)=1. - _Vladimir Kruchinin_, Feb 01 2011
%F Define polynomials g_n by g_0=1, g_1=g_2=0, g_3=g_4=g_5=x; g(n) = x*Sum_{i=0..n-3} binomial(n-1,i)*g_i; then a(n) = g_n(1). [Riordan]
%F a(0) = 1; a(n) = Sum_{k=0..n-3} binomial(n-1,k+2) * a(n-k-3). - _Seiichi Manyama_, Sep 22 2023
%p Copy ZL := [ B,{B=Set(Set(Z, card>=3))}, labeled ]: [seq(combstruct[count](ZL, size=n), n=0..25)]; # _Zerinvary Lajos_, Mar 13 2007
%p G:={P=Set(Set(Atom,card>=3))}:combstruct[gfsolve](G,unlabeled,x):seq(combstruct[count]([P,G,labeled],size=i),i=0..25); # _Zerinvary Lajos_, Dec 16 2007
%p g:=proc(n) option remember; if n=0 then RETURN(1); fi; if n<=2 then RETURN(0); fi; if n<=5 then RETURN(x); fi; expand(x*add(binomial(n-1,i)*g(i),i=0..n-3)); end; [seq(subs(x=1,g(n)),n=0..60)]; # _N. J. A. Sloane_, Jul 20 2011
%t a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ Exp @ x - 1 - x - x^2 / 2], {x, 0, n}]] (* _Michael Somos_, Jul 20 2011 *)
%t a[0] = 1; a[n_] := n!*Sum[Sum[k!*(-1)^(m-k)*Binomial[m, k]*Sum[StirlingS2[i+k, k]* Binomial[m-k, n-m-i]*2^(-n+m+i)/(i+k)!, {i, 0, n-m}], {k, 0, m}]/m!, {m, 1, n}]; Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Apr 03 2015, after _Vladimir Kruchinin_ *)
%t Table[Sum[(-1)^j * Binomial[n, j] * BellB[n-j] * 2^((j-1)/2) * HypergeometricU[(1 - j)/2, 3/2, 1/2], {j, 0, n}], {n, 0, 25}] (* _Vaclav Kotesovec_, Feb 09 2020 *)
%o (PARI) {a(n) = if( n<0, 0, n! * polcoeff( exp( exp( x + x * O(x^n)) - 1 - x - x^2 / 2), n))} /* _Michael Somos_, Jul 20 2011 */
%Y Column k=2 of A293024.
%Y Cf. A000110, A000296, A057814, A057837, A059022.
%Y Cf. A293038.
%K nonn,easy
%O 0,7
%A _N. J. A. Sloane_
%E More terms from _Christian G. Bower_, Nov 09 2000
%E Edited by _N. J. A. Sloane_, Jul 20 2011