login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued fraction expansion of C = 2*Sum_{n>=0} 1/2^(2^n).
(Formerly M0049)
8

%I M0049 #34 Aug 30 2017 17:50:19

%S 1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,2,1,1,1,1,2,1,2,1,1,1,1,2,1,1,1,1,

%T 1,1,1,2,1,1,1,1,2,1,2,1,1,1,1,1,1,1,2,1,1,1,1,2,1,2,1,1,1,1,2,1,1,1,

%U 1,2,1,1,1,1,1,1,1,2,1,1,1,1,2,1,2,1,1,1,1,1,1,1,2,1,1,1,1,2,1,1,1,1,2,1,2

%N Continued fraction expansion of C = 2*Sum_{n>=0} 1/2^(2^n).

%C C arises when looking for a sequence b(n) such that b(1)=0 and b(n+1) is the smallest integer > b(n) such that the continued fraction for 1/2^b(1) + 1/2^b(2) + ... + 1/2^b(n+1) contains only 1's or 2's. It arises because b(n) = 2^n - 1 and C = Sum_{k>=0} 1/2^b(k). - _Benoit Cloitre_, Nov 03 2002

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Harry J. Smith, <a href="/A006466/b006466.txt">Table of n, a(n) for n = 0..20000</a>

%H Boris Adamczewski, <a href="http://www.emis.de/journals/JIS/VOL16/Adamczewski/adam6.html">The Many Faces of the Kempner Number</a>, Journal of Integer Sequences, Vol. 16 (2013), #13.2.15.

%H J. Shallit, <a href="/A006463/a006463.pdf">Letter to N. J. A. Sloane with attachment, Aug. 1979</a>

%H Jeffrey Shallit, <a href="http://www.cs.uwaterloo.ca/~shallit/Papers/scf.ps">Simple continued fractions for some irrational numbers</a>. J. Number Theory 11 (1979), no. 2, 209-217 <a href="http://dx.doi.org/10.1016/0022-314X(79)90040-4">[DOI]</a>

%F Recurrence: a(5n) = a(5n+1) = a(2) = a(5n+3) = a(20n+14) = a(40n+9) = 1, a(20n+4) = a(40n+29) = 2, a(5n+2) = 3 - a(5n-1), a(20n+19) = a(10n+9). - _Ralf Stephan_, May 17 2005

%e 1.632843018043786287416159475... = 1 + 1/(1 + 1/(1 + 1/(1 + 1/(2 + ...)))). - _Harry J. Smith_, May 09 2009

%o (PARI) { allocatemem(932245000); default(realprecision, 10000); x=suminf(n=0, 1/2^(2^n)); x=contfrac(2*x); for (n=1, 20001, write("b006466.txt", n-1, " ", x[n])); } \\ _Harry J. Smith_, May 09 2009

%Y Cf. A076214 = Decimal expansion. - _Harry J. Smith_, May 09 2009

%K nonn,cofr

%O 0,5

%A _N. J. A. Sloane_

%E Better description and more terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 19 2001