Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M0548 #83 Sep 24 2022 05:48:21
%S 1,2,3,4,6,8,9,12,15,16,20,24,25,30,35,36,42,48,49,56,63,64,72,80,81,
%T 90,99,100,110,120,121,132,143,144,156,168,169,182,195,196,210,224,
%U 225,240,255,256,272,288,289,306,323,324,342,360,361,380,399,400,420
%N Numbers k such that floor(sqrt(k)) divides k.
%C Numbers of the form k^2, k*(k+1), or k*(k+2). Nonsquare elements of this sequence are given by A035106. - _Max Alekseyev_, Nov 27 2006
%C Union of A000290, A002378, and A005563. - _Fred Daniel Kline_, Feb 06 2016
%C The asymptotic density of this sequence is 0 (Cooper and Kennedy, 1989). - _Amiram Eldar_, Jul 10 2020
%D T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 73, problem 21.
%D Jeffrey Shallit, personal communication.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Harry J. Smith, <a href="/A006446/b006446.txt">Table of n, a(n) for n = 1..1000</a>
%H Benoit Cloitre, <a href="http://dl.dropbox.com/u/46675017/divisibility_sequences.pdf">Some divisibility sequences</a>.
%H Curtis N. Cooper and Robert E. Kennedy, <a href="http://www.jstor.org/stable/2323194">Chebyshev's inequality and natural density</a>, Amer. Math. Monthly, Vol. 96, No. 2 (1989), pp. 118-124.
%H S. W. Golomb, <a href="http://www.jstor.org/stable/2319817">Problem E2491</a>, Amer. Math. Monthly, 82 (1975), 854-855.
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992.
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,2,-2,0,-1,1).
%F For k>=1 a(3*k-2) = k^2, a(3*k-1) = k*(k+1) and a(3*k) = k*(k+2). - _Benoit Cloitre_, Jan 14 2012
%F a(n) mod A000196(a(n)) = 0. - _Reinhard Zumkeller_, Apr 12 2013
%F a(n) = floor((n+1)/3)*(floor(n/3) + 1) + floor((n+2)/3). - _Ridouane Oudra_, Nov 21 2020
%F a(n) = a(n-1) + 2*a(n-3) - 2*a(n-4) - a(n-6) + a(n-7) for n > 7. - _Chai Wah Wu_, Apr 05 2021
%F Sum_{n>=1} 1/a(n) = 7/4 + Pi^2/6. - _Amiram Eldar_, Sep 24 2022
%p A006446:=(-1-z-z**2+z**3)/(z**2+z+1)**2/(z-1)**3; # conjectured by _Simon Plouffe_ in his 1992 dissertation
%p A006446:=n->`if`(type(n/floor(sqrt(n)), integer), n, NULL); seq(A006446(n), n=1..100); # _Wesley Ivan Hurt_, Feb 11 2014
%t Select[ Range[ 500 ], Mod[ #, Floor[ Sqrt[ # ]//N ] ]==0& ]
%o (PARI) { n=0; for (m=1, 10^9, if (m%floor(sqrt(m)) == 0, write("b006446.txt", n++, " ", m); if (n==1000, return)) ) } \\ _Harry J. Smith_, Feb 12 2010
%o (PARI) a(n)=my(k=n--\3+1);k*(k+n%3) \\ _Charles R Greathouse IV_, Jul 07 2011
%o (Haskell)
%o a006446 n = a006446_list !! (n-1)
%o a006446_list = filter (\x -> x `mod` a000196 x == 0) [1..]
%o -- _Reinhard Zumkeller_, Mar 31 2011
%Y Cf. A000196, A035106, A066377, A087811.
%K nonn,easy,nice
%O 1,2
%A _N. J. A. Sloane_