Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4253 #25 Dec 19 2021 00:07:39
%S 1,6,46,452,4852,52972,587047,6550808,73483256,827801468,9360123740,
%T 106189359544,1208328304864,13787042250528,157700137398689,
%U 1807893066408464,20768681225892328,239037464947999900
%N Number of unrooted maps with n edges on the torus.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A006386/b006386.txt">Table of n, a(n) for n = 2..30</a> (from Mednykh and Nedela)
%H A. D. Mednykh and R. Nedela, <a href="http://www.savbb.sk/mu/articles/4_2004_nedela.pdf">Enumeration of unrooted maps with given genus</a>, preprint (submitted to J. Combin. Th. B).
%H Timothy R. Walsh, <a href="http://dx.doi.org/10.1137/0604018">Generating nonisomorphic maps without storing them</a>, SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 161-178.
%H Timothy R. Walsh, <a href="https://doi.org/10.1016/j.tcs.2011.08.026">Counting maps on doughnuts</a>, Theoretical Computer Science, vol.502, pp.4-15, (September-2013).
%H Timothy R. S. Walsh, Alain Giorgetti, Alexander Mednykh, <a href="http://dx.doi.org/10.1016/j.disc.2011.11.027">Enumeration of unrooted orientable maps of arbitrary genus by number of edges and vertices</a>, Discrete Math. 312 (2012), no. 17, 2660--2671. MR2935417. - From _N. J. A. Sloane_, Aug 01 2012
%Y Cf. A006300.
%Y Cf. A006386, A104595, A104596, A215019.
%K nice,nonn
%O 2,2
%A _N. J. A. Sloane_
%E More terms from _Valery A. Liskovets_, Mar 22 2005
%E Edited by _N. J. A. Sloane_, May 23 2008