login
Number of noncyclic (finite) simple groups with n conjugacy classes.
(Formerly M2241)
4

%I M2241 #21 Dec 19 2021 00:10:11

%S 0,0,0,0,1,1,1,1,3,2,2,3,0,4,3,1,2,2,0,1,2

%N Number of noncyclic (finite) simple groups with n conjugacy classes.

%D C. A. Landauer, Simple Groups with 9, 10 and 11 Conjugate Classes. Ph.D. Dissertation, California Inst. Tech., Pasadena, 1973.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H C. A. Landauer, <a href="/A006379/a006379_1.pdf">Simple Groups with 9, 10 and 11 Conjugate Classes</a>, Ph.D. Dissertation, California Inst. Tech., Pasadena, 1973. (Annotated scanned copy)

%H D. Wales & N. J. A. Sloane, <a href="/A006379/a006379.pdf">Correspondence, 1991</a>

%H <a href="/index/Gre#groups">Index entries for sequences related to groups</a>

%Y Cf. A003061, A073043, A002319.

%K nonn,nice,more

%O 1,9

%A _N. J. A. Sloane_

%E Apparently further terms have been computed by John Poland and (?) Komissarchik.