Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3825 #73 Aug 02 2024 22:38:58
%S 1,5,13,23,29,30,31,40,61,77,78,60,47,70,104,138,125,90,85,100,174,
%T 184,156,120,79,155,182,239,232,150,186,160,253,276,234,240,101,190,
%U 260,322,366,210,248,220,348,462,312,240,143,285,403,414,406,270
%N Expansion of (phi(-q^3) * psi(q))^3 / (phi(-q) * psi(q^3)) in powers of q where phi(), psi() are Ramanujan theta functions.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
%C Expansion of a modular form related to Apery numbers A005259. - _Michael Somos_, Mar 25 1999
%C Number 11 and 33 of the 126 eta-quotients listed in Table 1 of Williams 2012. - _Michael Somos_, Nov 10 2018
%D M. Kontsevich and D. Zagier, Periods, pp. 771-808 of B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D D. Zagier, "Elliptic modular forms and their applications." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 1-103.
%H Seiichi Manyama, <a href="/A006353/b006353.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from T. D. Noe)
%H F. Beukers, <a href="http://dx.doi.org/10.1016/0022-314X(87)90025-4">Another congruence for the Apéry numbers</a>, J. Number Theory 25 (1987), no. 2, 201-210.
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%H K. S. Williams, <a href="http://dx.doi.org/10.1142/S1793042112500595">Fourier series of a class of eta quotients</a>, Int. J. Number Theory 8 (2012), no. 4, 993-1004.
%F Expansion of (b(q^2)^2 / b(q)) * (c(q)^2 / c(q^2)) / 3 in powers of q where b(), c() are cubic AGM theta functions.
%F Expansion of (eta(q^2) * eta(q^3))^7 / (eta(q) * eta(q^6))^5 in powers of q.
%F Euler transform of period 6 sequence [5, -2, -2, -2, 5, -4, ...]. - _Michael Somos_, Oct 11 2006
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 6 (t / i)^2 f(t) where q = exp(2 Pi i t). - _Michael Somos_, Sep 04 2013
%F G.f.: Product_{k>0} (1 - x^k)^2 * (1 - x^(3*k))^2 * (1 + x^k)^7 / (1 + x^(3*k))^5.
%F G.f.: Sum_{n>=0} A005259(n)*t(q)^n where t(q) = (eta(q)*eta(q^6)/(eta(q^2)*eta(q^3))^12. - _Seiichi Manyama_, Jun 10 2017 [See the Kontsevich-Zagier paper, section 2.4., and t is given in A226235. - _Wolfdieter Lang_, May 16 2018 ]
%e G.f. = 1 + 5*q + 13*q^2 + 23*q^3 + 29*q^4 + 30*q^5 + 31*q^6 + 40*q^7 + 61*q^8 + ...
%t EulerTransform[ seq_List ] := With[ {m = Length[seq]}, CoefficientList[ Series[ Times @@ (1/(1 - x^Range[m])^seq), {x, 0, m}], x]]; s6 = Table[ {5, -2, -2, -2, 5, -4}, {10}] // Flatten; EulerTransform[ s6 ] (* _Jean-François Alcover_, Mar 15 2012, after _Michael Somos_ *)
%t a[ n_] := If[ n < 1, Boole[n == 0], Sum[ d {0, 5, 4, 6, 4, 5}[[ Mod[d, 6] + 1]], {d, Divisors@n}]]; (* _Michael Somos_, May 27 2014 *)
%t a[ n_] := SeriesCoefficient[ (QPochhammer[ q^2] QPochhammer[ q^3])^7 / (QPochhammer[ q] QPochhammer[ q^6])^5, {q, 0, n}]; (* _Michael Somos_, May 27 2014 *)
%o (PARI) {a(n) = if( n<1, n==0, sumdiv(n, d, d*[0, 5, 4, 6, 4, 5][ d%6 + 1]))}; /* _Michael Somos_, Oct 11 2006 */
%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^3 + A))^7 / (eta(x + A) * eta(x^6 + A))^5, n))}; /* _Michael Somos_, Oct 11 2006 */
%o (PARI) q='q+O('q^99); Vec((eta(q^2)*eta(q^3))^7/(eta(q)*eta(q^6))^5) \\ _Altug Alkan_, May 16 2018
%o (Sage) A = ModularForms( Gamma0(6), 2, prec=56).basis(); A[0] + 5*A[1] + 13*A[2]; # _Michael Somos_, Sep 04 2013
%o (Magma) A := Basis(ModularForms(Gamma0(6), 2)); PowerSeries( A[1] + 5*A[2] + 13*A[3], 56); /* _Michael Somos_, Sep 04 2013 */
%o (Ruby)
%o def A000203(n)
%o s = 0
%o (1..n).each{|i| s += i if n % i == 0}
%o s
%o end
%o def A006353(n)
%o a = [0] + (1..n).map{|i| A000203(i)}
%o ary = [1]
%o (1..n).each{|i|
%o ary[i] = 5 * a[i]
%o ary[i] -= 2 * a[i / 2] if i % 2 == 0
%o ary[i] += 3 * a[i / 3] if i % 3 == 0
%o ary[i] -= 30 * a[i / 6] if i % 6 == 0
%o }
%o ary
%o end
%o p A006353(100) # _Seiichi Manyama_, Jun 09 2017
%Y Cf. A000203, A005259, A006352 (E_2), A226235 (t(q)).
%K nonn,easy,nice
%O 0,2
%A _N. J. A. Sloane_
%E Extended with PARI programs by _Michael Somos_