login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Taylor series related to one in Ramanujan's Lost Notebook.
(Formerly M1014)
3

%I M1014 #28 Dec 18 2021 22:17:12

%S 1,2,4,6,10,16,25,38,58,84,122,174,244,338,465,630,850,1136,1508,1988,

%T 2608,3398,4408,5688,7306,9342,11900,15090,19070,24008,30122,37666,

%U 46955,58348,72302,89338,110094,135316,165912,202924,247632,301508

%N Taylor series related to one in Ramanujan's Lost Notebook.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vaclav Kotesovec, <a href="/A006305/b006305.txt">Table of n, a(n) for n = 0..20000</a>

%H G. E. Andrews, <a href="http://dx.doi.org/10.1007/BFb0096452">Mordell integrals and Ramanujan's "Lost" Notebook</a>, pp. 10-48 of Analytic Number Theory (Philadelphia 1980), Lect. Notes Math. 899 (1981).

%F G.f.: Sum_{n>=0} q^(n^2+n) (1+q^2)(1+q^4)...(1+q^(2n))/((1-q)^2 (1-q^2) (1-q^3)^2 (1-q^4) ... (1-q^(2n)) (1-q^(2n+1))^2).

%F a(n) ~ c * exp(r*sqrt(n)) / n^(3/4), where r = 2.74858241446108527... and c = 0.1051685561271293027... - _Vaclav Kotesovec_, Jun 12 2019

%e G.f. = 1 + 2*x + 4*x^2 + 6*x^3 + 10*x^4 + 16*x^5 + 25*x^6 + 38*x^7 + 58*x^8 + ...

%t Series[Sum[q^(n^2+n)/(1-q)^2 Product[(1+q^(2k))/((1-q^(2k))(1-q^(2k+1))^2), {k, 1, n}], {n, 0, 9}], {q, 0, 100}]

%t a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(k k + k) QPochhammer[ -x^2, x^2, k] / (QPochhammer[ x, x, 2 k + 1] QPochhammer[ x, x^2, k + 1] ) , {k, 0, Sqrt @ n}], {x, 0, n}]]; (* _Michael Somos_, Jul 09 2015 *)

%t nmax = 100; CoefficientList[Series[Sum[x^(k^2+k)/(1-x)^2 * Product[(1+x^(2*j))/((1-x^(2*j))*(1-x^(2*j+1))^2), {j, 1, k}], {k, 0, Floor[Sqrt[nmax]]}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jun 11 2019 *)

%Y Cf. A006304, A006306.

%K nonn,easy,nice

%O 0,2

%A _N. J. A. Sloane_

%E Corrected and extended by _Dean Hickerson_, Dec 13 1999