login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Pierce expansion for 1 / Pi.
(Formerly M3092)
10

%I M3092 #41 Nov 24 2020 16:01:29

%S 3,22,118,383,571,635,70529,375687,399380,575584,699357,1561065,

%T 1795712,194445473,253745996,3199003690,3727084011,6607433185,

%U 16248462801,172940584814,313728984965,796022309187,5348508258636,5962546521072,97497255361780,121347007731845

%N Pierce expansion for 1 / Pi.

%C Sequence can be produced with the unit circle: a(1) = number of diameter length arcs in circle rounded down to nearest integer (remainder arc = x_1). a(2) = number of x_1 length arcs in circle rounded down to nearest integer (remainder arc = x_2). a(3) = number of x_2 length arcs in circle rounded down to nearest integer (remainder arc = x_3). And so on ... . - _Peter Woodward_, Sep 08 2016

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H G. C. Greubel, <a href="/A006283/b006283.txt">Table of n, a(n) for n = 0..500</a>

%H Jeffrey Shallit, <a href="http://www.fq.math.ca/Scanned/22-4/shallit1.pdf">Some predictable Pierce expansions</a>, Fib. Quart., 22 (1984), 332-335.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PierceExpansion.html">Pierce Expansion</a>

%e Let x_0 = 1/Pi = 0.318309886... and a(0) = floor(1/x_0) = 3. Then set x_1 = 1 - a_0*x_0 = 0.0450703..., and a(1) = floor(1/x_1) = 22. Then x_2 = 1 - a_1*x_1 = 0.008452..., and a(2) = floor(1/x2) = 118. - _Michael B. Porter_, Sep 09 2016

%t PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[1/Pi, 8!], 50] (* _G. C. Greubel_, Nov 13 2016 *)

%o (PARI) default(realprecision, 100000); r=Pi; for(n=1,100,s=(r/(r-floor(r))); print1(floor(r),","); r=s) \\ _Benoit Cloitre_ [amended by _Georg Fischer_, Nov 20 2020]

%Y Cf. A154956 (analog for 2/Pi).

%K nonn

%O 0,1

%A _Jeffrey Shallit_