Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M5162 #28 Aug 11 2018 02:56:13
%S 0,24,444,4400,32120,195800,1062500,5326160,25243904,114876376,
%T 507259276,2189829808,9292526920,38917528600,161343812980,
%U 663661077072,2713224461136,11039636532120,44751359547420,180880752056880
%N Second-order Eulerian numbers <<n,3>>.
%D R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd edition. Addison-Wesley, Reading, MA, 1994, p. 270.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Seiichi Manyama, <a href="/A006260/b006260.txt">Table of n, a(n) for n = 3..1000</a>
%H I. Gessel and R. P. Stanley, <a href="https://doi.org/10.1016/0097-3165(78)90042-0">Stirling polynomials</a>, J. Combin. Theory, A 24 (1978), 24-33.
%F G.f.: x^4(24-36x-280x^2+652x^3-168x^4-288x^5)/((1-x)^4(1-2x)^3(1-3x)^2(1-4x)). - _Michael Somos_, Oct 13, 2002
%F a(n) = sum((-1)^(n+k+2)*binomial(2*n+1,k)*stirling1(2*n-k-3,n-k-3), k=0..n-4). [_Johannes W. Meijer_, Oct 16 2009].
%p G:=x^4*(24-36*x-280*x^2+652*x^3-168*x^4-288*x^5)/((1-x)^4*(1-2*x)^3*(1-3*x)^2*(1-4*x)): Gser:=series(G,x=0,27): seq(coeff(Gser,x^n),n=3..25);
%Y a(n) = A008517(n, 4).
%Y 3rd column of A201637.
%Y Equals for n=>4 fifth right hand column of A163936. [_Johannes W. Meijer_, Oct 16 2009].
%K nonn,easy
%O 3,2
%A _N. J. A. Sloane_, _Mira Bernstein_, _Robert G. Wilson v_
%E More terms from _Emeric Deutsch_, Dec 15 2004