login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of perfect matchings (or domino tilings) in C_4 X P_n.
(Formerly M1926)
31

%I M1926 #122 Jul 19 2024 19:30:37

%S 1,2,9,32,121,450,1681,6272,23409,87362,326041,1216800,4541161,

%T 16947842,63250209,236052992,880961761,3287794050,12270214441,

%U 45793063712,170902040409,637815097922,2380358351281,8883618307200,33154114877521,123732841202882

%N Number of perfect matchings (or domino tilings) in C_4 X P_n.

%C Number of tilings of a box with sides 2 X 2 X n in R^3 by boxes of sides 2 X 1 X 1 (3-dimensional dominoes). - _Frans J. Faase_

%C The number of domino tilings in A006253, A004003, A006125 is the number of perfect matchings in the relevant graphs. There are results of Jockusch and Ciucu that if a planar graph has a rotational symmetry then the number of perfect matchings is a square or twice a square - this applies to these 3 sequences. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 12 2001

%C Also stacking bricks.

%C a(n)*(-1)^n = (1-T(n+1,-2))/3, n>=0, with Chebyshev's polynomials T(n,x) of the first kind, is the r=-2 member of the r-family of sequences S_r(n) defined in A092184 where more information can be found. - _Wolfdieter Lang_, Oct 18 2004

%C Partial sums of A217233. - _Bruno Berselli_, Oct 01 2012

%C The sequence is the case P1 = 2, P2 = -8, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - _Peter Bala_, Apr 03 2014

%D R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 360.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A006253/b006253.txt">Table of n, a(n) for n = 0..1000</a>

%H S. Butler and S. Osborne, <a href="http://orion.math.iastate.edu/butler/papers/14_02_walks.pdf">Counting tilings by taking walks</a>, preprint, 2012; J. Combin. Math. Combin. Comput. 88 2014 17-25. - From _N. J. A. Sloane_, Dec 27 2012

%H M. Ciucu, <a href="http://dx.doi.org/10.1006/jcta.1996.2725">Enumeration of perfect matchings in graphs with reflective symmetry</a>, J. Combin. Theory Ser. A 77 (1997), no. 1, 67-97

%H D. Deford, <a href="http://www.math.dartmouth.edu/~ddeford/graphs.pdf">Seating rearrangements on arbitrary graphs</a>, preprint 2013; involve, Vol. 7 (2014), No. 6, 787-805.

%H F. Faase, <a href="http://www.iwriteiam.nl/counting.html">Counting Hamiltonian cycles in product graphs</a>

%H F. Faase, <a href="http://www.iwriteiam.nl/Cresults.html">Results from the counting program</a>

%H W. Jockusch, <a href="http://dx.doi.org/10.1016/0097-3165(94)90006-X">Perfect matchings and perfect squares</a> J. Combin. Theory Ser. A 67 (1994), no. 1, 100-115.

%H R. J. Mathar, <a href="https://arxiv.org/abs/1406.7788">Tilings of rectangular regions by rectangular tiles: Counts derived from transfer matrices</a>, arXiv:1406.7788 (2014), eq. (36).

%H Valcho Milchev and Tsvetelina Karamfilova, <a href="https://arxiv.org/abs/1707.09741">Domino tiling in grid - new dependence</a>, arXiv:1707.09741 [math.HO], 2017.

%H László Németh, <a href="https://arxiv.org/abs/1909.11729">Tilings of (2 X 2 X n)-board with colored cubes and bricks</a>, arXiv:1909.11729 [math.CO], 2019.

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992.

%H Radovan Potůček, <a href="https://doi.org/10.37394/232021.2023.3.12">The number of fillings a 2 X 2 X n prism with 1 X 1 X 2 prisms</a>, Equations (2024) Vol. 3, 104-114.

%H H. C. Williams and R. K. Guy, <a href="http://dx.doi.org/10.1142/S1793042111004587">Some fourth-order linear divisibility sequences</a>, Intl. J. Number Theory 7 (5) (2011) 1255-1277.

%H H. C. Williams and R. K. Guy, <a href="https://www.emis.de/journals/INTEGERS/papers/a17self/a17self.Abstract.html">Some Monoapparitic Fourth Order Linear Divisibility Sequences</a> Integers, Volume 12A (2012) The John Selfridge Memorial Volume

%H <a href="/index/Do#domino">Index entries for sequences related to dominoes</a>

%H <a href="/index/Br#bricks">Index entries for sequences related to bricks</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,3,-1).

%F G.f.: (1-x)/((1+x)*(1-4*x+x^2)) = (1-x)/(1-3*x-3*x^2+x^3). - _Simon Plouffe_ in his 1992 dissertation; typo corrected by _Vincenzo Librandi_, Oct 15 2012

%F Nearest integer to (1/6)*(2+sqrt(3))^(n+1). - _Don Knuth_, Jul 15 1995

%F For n >= 4, a(n) = 3a(n-1) + 3a(n-2) - a(n-3). - Avi Peretz (njk(AT)netvision.net.il), Mar 30 2001

%F For n >= 3, a(n) = 4a(n-1) - a(n-2) + 2*(-1)^n. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 14 2001

%F From Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 11 2001: The values are a(1) = 2 * 1^2, a(2) = 3^2, a(3) = 2 * 4^2, a(4) = 11^2, a(5) = 2 * 15^2, ... and in general for odd n a(n) is twice a square, for even n a(n) is a square. If we define b(n) by b(n) = sqrt(a(n)) for even n, b(n) = sqrt(a(n)/2) for odd n then apart from the first 2 elements b(n) is A002530(n+1).

%F a(n) + a(n+1) = A001835(n+2). - _R. J. Mathar_, Dec 06 2013

%F From _Peter Bala_, Apr 03 2014: (Start)

%F a(n) = |U(n,i/sqrt(2))|^2 where U(n,x) denotes the Chebyshev polynomial of the second kind.

%F a(n-1) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 2; 1, 1] and T(n,x) denotes the Chebyshev polynomial of the first kind.

%F See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)

%F a(n) = (2*(-1)^n + (2-sqrt(3))^(1+n) + (2+sqrt(3))^(1+n)) / 6. - _Colin Barker_, Dec 16 2017

%F a(n) = (1 XOR a(n-1))^2/a(n-2). - _Jon Maiga_, Nov 16 2018

%F a(n) = a(-2-n) for all n in Z. - _Michael Somos_, Mar 17 2022

%F INVERT transform of sequence p(n), n > 0, where p is the number of nonreducible tilings by height of 2 X 2 X n using dicubes; p is (2, 5, 4, 4, 4, 4...). - _Nicolas Bělohoubek_, Jun 04 2024

%e G.f. = 1 + 2*x + 9*x^2 + 32*x^3 + 121*x^4 + 450*x^5 + ... - _Michael Somos_, Mar 17 2022

%t CoefficientList[Series[(1 - x)/(1 - 3 x - 3 x^2 + x^3), {x, 0, 30}], x] (* _Vincenzo Librandi_, Oct 15 2012 *)

%t RecurrenceTable[{a[1] == 1, a[2] == 2, a[n] == BitXor[1, a[n - 1]]^2/a[n - 2]}, a, {n, 30}] (* _Jon Maiga_, Nov 16 2018 *)

%t LinearRecurrence[{3,3,-1}, {1,2,9}, 30] (* _G. C. Greubel_, Nov 16 2018 *)

%t a[ n_] := (-1)^n * ChebyshevU[n, Sqrt[-1/2]]^2; (* _Michael Somos_, Mar 17 2022 *)

%o (PARI) a(n)=(sqrt(3)+2)^(n+1) \/ 6 \\ _Charles R Greathouse IV_, Aug 18 2016

%o (PARI) a(n)=([0,1,0; 0,0,1; -1,3,3]^n*[1;2;9])[1,1] \\ _Charles R Greathouse IV_, Aug 18 2016

%o (PARI) Vec((1 - x) / ((1 + x)*(1 - 4*x + x^2)) + O(x^40)) \\ _Colin Barker_, Dec 16 2017

%o (PARI) {a(n) = simplify((-1)^n * polchebyshev(n, 2, quadgen(-8)/2)^2)}; /* _Michael Somos_, Mar 17 2022 */

%o (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x)/(1-3*x-3*x^2+x^3))); // _G. C. Greubel_, Nov 16 2018

%o (Sage) s=((1-x)/(1-3*x-3*x^2+x^3)).series(x,30); s.coefficients(x, sparse=False) # _G. C. Greubel_, Nov 16 2018

%o (GAP) a:=[1,2,9];; for n in [4..30] do a[n]:=3*a[n-1]+3*a[n-2]-a[n-3]; od; a; # _G. C. Greubel_, Nov 16 2018

%Y Cf. A002530, A004003, A006125, A217233 (first differences), A109437 (partial sums).

%Y Column k=2 of A181206, A189650, A233308.

%Y Cf. A100047.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_