login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Bessel polynomial {y_n}'(-1).
(Formerly M3082)
4

%I M3082 #32 Aug 18 2017 09:40:03

%S 0,1,-3,21,-185,2010,-25914,386407,-6539679,123823305,-2593076255,

%T 59505341676,-1484818160748,40025880386401,-1159156815431055,

%U 35891098374564105,-1183172853341759129,41372997479943753582,-1529550505546305534414,59608871544962952539335

%N Bessel polynomial {y_n}'(-1).

%C Absolute values give partitions into pairs.

%D G. Kreweras and Y. Poupard, Sur les partitions en paires d'un ensemble fini totalement ordonné, Publications de l'Institut de Statistique de l'Université de Paris, 23 (1978), 57-74.

%D J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H G. C. Greubel, <a href="/A006199/b006199.txt">Table of n, a(n) for n = 1..400</a>

%H <a href="/index/Be#Bessel">Index entries for sequences related to Bessel functions or polynomials</a>

%F a(n) = A000806(n) + (n-1) * A000806(n-1). - _Sean A. Irvine_, Jan 23 2017

%F From _G. C. Greubel_, Aug 14 2017: (Start)

%F a(n) = 2*n*(1/2)_{n} * (-2)^(n-1) * hyergeometric1f1(1-n; -2*n; -2), where (a)_{n} is the Pochhammer symbol.

%F E.g.f.: (1+2*x)^(-3/2)*( (1+2*x)^(3/2) - x*(1+2*x)^(1/2) - x -1) * exp(sqrt(1+2*x) - 1), for offset 0. (End)

%F G.f.: (x/(1-x)^3)*hypergeometric2f0(2,3/2; - ; -2*x/(1-x)^2), for offset 0. - _G. C. Greubel_, Aug 16 2017

%t Join[{0}, Table[2*n*Pochhammer[1/2, n]*(-2)^(n - 1)* Hypergeometric1F1[1 - n, -2*n, -2], {n,1,50}]] (* _G. C. Greubel_, Aug 14 2017 *)

%o (PARI) for(n=0,50, print1(sum(k=0,n-1, ((n+k)!/(k!*(n-k)!))*(-1/2)^k), ", ")) \\ _G. C. Greubel_, Aug 14 2017

%Y Cf. A000806, A001514, A065707, A065920, A065921, A065922.

%K sign

%O 1,3

%A _N. J. A. Sloane_