Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M1849 #102 Jan 31 2023 11:20:11
%S 1,2,8,32,136,592,2624,11776,53344,243392,1116928,5149696,23835904,
%T 110690816,515483648,2406449152,11258054144,52767312896,247736643584,
%U 1164829376512,5484233814016,25852072517632,121997903495168
%N n*a(n) = 2*(2*n-1)*a(n-1) + 4*(n-1)*a(n-2) with a(0) = 1.
%C a(n) = number of Delannoy paths (A001850) from (0,0) to (n,n) in which every Northeast step is immediately preceded by an East step. - _David Callan_, Mar 14 2004
%C The Hankel transform (see A001906 for definition) of this sequence is A036442 : 1, 4, 32, 512, 16384, ... . - _Philippe Deléham_, Jul 03 2005
%C In general, 1/sqrt(1-4*r*x-4*r*x^2) has e.g.f. exp(2rx)BesselI(0,2r*sqrt((r+1)/r)x), a(n) = Sum_{k=0..n} C(2k,k)*C(k,n-k)*r^k, gives the central coefficient of (1+(2r)x+r(r+1)x^2) and is the (2r)-th binomial transform of 1/sqrt(1-8*C(n+1,2)x^2). - _Paul Barry_, Apr 28 2005
%C Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H and U steps can have two colors. - _N-E. Fahssi_, Feb 05 2008
%C Self-convolution of a(n)/2^n gives Pell numbers A000129(n+1). - _Vladimir Reshetnikov_, Oct 10 2016
%C This sequence gives the integer part of an integral approximation to Pi, and also appears in Frits Beukers's "A Rational Approach to Pi" (cf. Links, Example). Despite quality M ~ 0.9058... reported by Beukers, measurements between n = 10000 and 30000 lead to a contentious quality estimate, M ~ 0.79..., at the 99% confidence level. In "Searching for Apéry-Style Miracles" Doron Zeilberger Quotes that M = 0.79119792... and also gives a closed form. The same rational approximation to Pi also follows from time integration on a quartic Hamiltonian surface, 2*H=(q^2+p^2)*(1-4*q*(q-p)). - _Bradley Klee_, Jul 19 2018, updated Mar 17 2019
%C Diagonal of rational function 1/(1 - (x + y + x*y^2)). - _Gheorghe Coserea_, Aug 06 2018
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H G. C. Greubel, <a href="/A006139/b006139.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..200 from T. D. Noe)
%H Frits Beukers, <a href="https://dspace.library.uu.nl/handle/1874/26398">A rational approach to Pi</a>, Nieuw archief voor wiskunde 5/1 No. 4, December 2000, p. 377.
%H Dario Castellanos, <a href="http://www.fq.math.ca/Scanned/27-5/castellanos.pdf">A generalization of Binet's formula and some of its consequences</a>, Fib. Quart., 27 (1989), 424-438.
%H Maciej Dziemianczuk, <a href="http://arxiv.org/abs/1410.5747">On Directed Lattice Paths With Additional Vertical Steps</a>, arXiv:1410.5747 [math.CO], 2014.
%H Shalosh B. Ekhad and Doron Zeilberger, <a href="https://arxiv.org/abs/1405.4445">Searching for Apéry-Style Miracles [Using, Inter-Alia, the Amazing Almkvist-Zeilberger Algorithm]</a>, arXiv:1405.4445 [math.NT], 2014.
%H Bradley Klee, <a href="http://demonstrations.wolfram.com/ApproximatingPiWithTrigonometricPolynomialIntegrals/">Approximating Pi with Trigonometric-Polynomial Integrals</a>, Wolfram Demonstrations, July 27, 2018.
%H Tony D. Noe, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Noe/noe35.html">On the Divisibility of Generalized Central Trinomial Coefficients</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
%F a(n) = Sum_{k=0..n} C(2*k, k)*C(k, n-k). - Detlef Pauly (dettodet(AT)yahoo.de), Nov 08 2001
%F G.f.: 1/(1-4x-4x^2)^(1/2); also, a(n) is the central coefficient of (1+2x+2x^2)^n. - _Paul D. Hanna_, Jun 01 2003
%F Inverse binomial transform of central Delannoy numbers A001850. - _David Callan_, Mar 14 2004
%F E.g.f.: exp(2*x)*BesselI(0, 2*sqrt(2)*x). - _Vladeta Jovovic_, Mar 21 2004
%F a(n) = Sum_{k=0..floor(n/2)} C(n,2k)*C(2k,k)*2^(n-k). - _Paul Barry_, Sep 19 2006
%F a(n) ~ 2^(n - 3/4) * (1 + sqrt(2))^(n + 1/2) / sqrt(Pi*n). - _Vaclav Kotesovec_, Oct 05 2012, simplified Jan 31 2023
%F G.f.: 1/(1 - 2*x*(1+x)*Q(0)), where Q(k)= 1 + (4*k+1)*x*(1+x)/(k+1 - x*(1+x)*(2*k+2)*(4*k+3)/(2*x*(1+x)*(4*k+3)+(2*k+3)/Q(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, May 14 2013
%F a(n) = 2^n*hypergeom([-n/2, 1/2-n/2], [1], 2). - _Peter Luschny_, Sep 18 2014
%F 0 = a(n)*(+16*a(n+1) + 24*a(n+2) - 8*a(n+3)) + a(n+1)*(+8*a(n+1) + 16*a(n+2) - 6*a(n+3)) + a(n+2)*(-2*a(n+2) + a(n+3)) for all n in Z. - _Michael Somos_, Oct 13 2016
%F It appears that Pi/2 = Sum_{n >= 1} (-1)^(n-1)*4^n/(n*a(n-1)*a(n)). - _Peter Bala_, Feb 20 2017
%F G.f.: G(x) = (1/(2*Pi))*Integral_{y=0..2*Pi} 1/(1-x*(4*(sin(y)-cos(y))*sin(y)))*dy, also satisfies: (2+4*x)*G(x)-(1-4*x-4*x^2)*G'(x)=0. - _Bradley Klee_, Jul 19 2018
%e G.f. = 1 + 2*x + 8*x^2 + 32*x^3 + 136*x^4 + 592*x^5 + 2624*x^6 + 11776*x^7 + ...
%e J_3 = Integral_{y=0..Pi/4} 4*(4*(sin(y)-cos(y))*sin(y))^3*dy = 32*Pi - (304/3), |J_3| < 1. - _Bradley Klee_, Jul 19 2018
%p seq(add(binomial(2*k, k)*binomial(k, n-k), k=0..n), n=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 08 2001
%p A006139 := n -> 2^n*hypergeom([-n/2, 1/2-n/2], [1], 2):
%p seq(simplify(A006139(n)), n=0..29); # _Peter Luschny_, Sep 18 2014
%t Table[SeriesCoefficient[1/(1-4x-4x^2)^(1/2),{x,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 05 2012 *)
%t Table[Abs[LegendreP[n, I]] 2^n, {n, 0, 20}] (* _Vladimir Reshetnikov_, Oct 22 2015 *)
%t Table[Sum[Binomial[2*k, k]*Binomial[k, n - k], {k,0,n}], {n,0,50}] (* _G. C. Greubel_, Feb 28 2017 *)
%t a[n_] := If[n == 0, 1, Coefficient[(1 + 2 x + 2 x^2)^n, x^n]] (* _Emanuele Munarini_, Aug 04 2017 *)
%t CoefficientList[Series[1/Sqrt[(-4 x^2 - 4 x + 1)], {x, 0, 24}], x] (* _Robert G. Wilson v_, Jul 28 2018 *)
%o (PARI) for(n=0,30,t=polcoeff((1+2*x+2*x^2)^n,n,x); print1(t","))
%o (PARI) for(n=0,25, print1(sum(k=0,n, binomial(2*k,k)*binomial(k,n-k)), ", ")) \\ _G. C. Greubel_, Feb 28 2017
%o (PARI) {a(n) = (-2*I)^n * pollegendre(n, I)}; /* _Michael Somos_, Aug 04 2018 */
%o (Maxima) a(n) := coeff(expand((1+2*x+2*x^2)^n),x,n);
%o makelist(a(n),n,0,12); /* _Emanuele Munarini_, Aug 04 2017 */
%o (GAP) a:=[1,2];; for n in [3..25] do a[n]:=1/(n-1)*(2*(2*n-3)*a[n-1]+4*(n-2)*a[n-2]); od; a; # _Muniru A Asiru_, Aug 06 2018
%Y Cf. A001850, A002426, A036442, A084600-A084606, A084608-A084615.
%Y Cf. A106258, A106259, A106260, A106261.
%Y First column of A110446. A higher-quality Pi approximation: A123178.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_