login
A006117
Sum of Gaussian binomial coefficients [ n,k ] for q=3.
(Formerly M1687)
10
1, 2, 6, 28, 212, 2664, 56632, 2052656, 127902864, 13721229088, 2544826627424, 815300788443072, 452436459318538048, 434188323928823259776, 722197777341507864283008, 2078153254879878944892861184, 10366904326991986000747424911616, 89478415088556766546699920236339712, 1338962661056423158371347974009398601216
OFFSET
0,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
R. Chapman et al., 2-modular lattices from ternary codes, J. Th. des Nombres de Bordeaux, 14 (2002), 73-85.
S. Hitzemann, W. Hochstattler, On the combinatorics of Galois numbers, Discr. Math. 310 (2010) 3551-3557, Galois Numbers G_{n}^(2).
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
FORMULA
O.g.f.: A(x) = Sum_{n>=0} x^n / Product_{k=0..n} (1 - 3^k*x). - Paul D. Hanna, Dec 06 2007
a(n) = 2*a(n-1)+(3^(n-1)-1)*a(n-2), n>1. [Hitzemann and Hochstattler] - R. J. Mathar, Aug 21 2013
a(n) ~ c * 3^(n^2/4), where c = EllipticTheta[3,0,1/3] / QPochhammer[1/3,1/3] = 3.019783845699... if n is even and c = EllipticTheta[2,0,1/3]/QPochhammer[1/3,1/3] = 3.018269046371... if n is odd. - Vaclav Kotesovec, Aug 21 2013
0 = a(n)*(2*a(n+1) + 2*a(n+2) - a(n+3)) + a(n+1)*(-6*a(n+1) + 3*a(n+2)) for all n in Z. - Michael Somos, Jan 25 2014
EXAMPLE
O.g.f.: A(x) = 1/(1-x) + x/((1-x)*(1-3x)) + x^2/((1-x)*(1-3x)*(1-9x)) + x^3/((1-x)*(1-3x)*(1-9x)*(1-27x)) + ...
Also generated by iterated binomial transforms in the following way:
[1,2,6,28,212,2664,56632,...] = BINOMIAL([1,1,3,15,129,1833,43347,..]);
[1,3,15,129,1833,43347,1705623,...] = BINOMIAL^2([1,1,7,67,1081,...]);
[1,7,67,1081,29185,1277887,...] = BINOMIAL^6([1,1,19,415,12961,...]);
[1,19,415,12961,684361,58352707,...] = BINOMIAL^18([1,1,55,3187,...]);
[1,55,3187,219673,22634209,...] = BINOMIAL^54([1,1,163,27055,4805569,...]);
etc.
G.f. = 1 + 2*x + 6*x^2 + 28*x^3 + 212*x^4 + 2664*x^5 + 56632*x^6 + 2052656*x^7 + ...
MAPLE
f:=n-> 1+ add( mul((3^(n-i)-1)/(3^(i+1)-1), i=0..k-1), k=1..n);
MATHEMATICA
Flatten[{1, RecurrenceTable[{a[n]==2*a[n-1]+(3^(n-1)-1)*a[n-2], a[0]==1, a[1]==2}, a, {n, 1, 15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)
Table[Sum[QBinomial[n, k, 3], {k, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, Aug 13 2016 *)
PROG
(PARI) a(n)=polcoeff(sum(k=0, n, x^k/prod(j=0, k, 1-3^j*x+x*O(x^n))), n) \\ Paul D. Hanna, Dec 06 2007
(Magma) [n le 2 select n else 2*Self(n-1)+(3^(n-2)-1)*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Aug 13 2016
CROSSREFS
Sequence in context: A093657 A355064 A305627 * A118025 A226773 A370926
KEYWORD
nonn,easy
STATUS
approved