OFFSET
0,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..90
R. Chapman et al., 2-modular lattices from ternary codes, J. Th. des Nombres de Bordeaux, 14 (2002), 73-85.
S. Hitzemann, W. Hochstattler, On the combinatorics of Galois numbers, Discr. Math. 310 (2010) 3551-3557, Galois Numbers G_{n}^(2).
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
FORMULA
O.g.f.: A(x) = Sum_{n>=0} x^n / Product_{k=0..n} (1 - 3^k*x). - Paul D. Hanna, Dec 06 2007
a(n) = 2*a(n-1)+(3^(n-1)-1)*a(n-2), n>1. [Hitzemann and Hochstattler] - R. J. Mathar, Aug 21 2013
a(n) ~ c * 3^(n^2/4), where c = EllipticTheta[3,0,1/3] / QPochhammer[1/3,1/3] = 3.019783845699... if n is even and c = EllipticTheta[2,0,1/3]/QPochhammer[1/3,1/3] = 3.018269046371... if n is odd. - Vaclav Kotesovec, Aug 21 2013
0 = a(n)*(2*a(n+1) + 2*a(n+2) - a(n+3)) + a(n+1)*(-6*a(n+1) + 3*a(n+2)) for all n in Z. - Michael Somos, Jan 25 2014
EXAMPLE
O.g.f.: A(x) = 1/(1-x) + x/((1-x)*(1-3x)) + x^2/((1-x)*(1-3x)*(1-9x)) + x^3/((1-x)*(1-3x)*(1-9x)*(1-27x)) + ...
Also generated by iterated binomial transforms in the following way:
[1,2,6,28,212,2664,56632,...] = BINOMIAL([1,1,3,15,129,1833,43347,..]);
[1,3,15,129,1833,43347,1705623,...] = BINOMIAL^2([1,1,7,67,1081,...]);
[1,7,67,1081,29185,1277887,...] = BINOMIAL^6([1,1,19,415,12961,...]);
[1,19,415,12961,684361,58352707,...] = BINOMIAL^18([1,1,55,3187,...]);
[1,55,3187,219673,22634209,...] = BINOMIAL^54([1,1,163,27055,4805569,...]);
etc.
G.f. = 1 + 2*x + 6*x^2 + 28*x^3 + 212*x^4 + 2664*x^5 + 56632*x^6 + 2052656*x^7 + ...
MAPLE
f:=n-> 1+ add( mul((3^(n-i)-1)/(3^(i+1)-1), i=0..k-1), k=1..n);
MATHEMATICA
Flatten[{1, RecurrenceTable[{a[n]==2*a[n-1]+(3^(n-1)-1)*a[n-2], a[0]==1, a[1]==2}, a, {n, 1, 15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)
Table[Sum[QBinomial[n, k, 3], {k, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, Aug 13 2016 *)
PROG
(PARI) a(n)=polcoeff(sum(k=0, n, x^k/prod(j=0, k, 1-3^j*x+x*O(x^n))), n) \\ Paul D. Hanna, Dec 06 2007
(Magma) [n le 2 select n else 2*Self(n-1)+(3^(n-2)-1)*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Aug 13 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved