login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square hex numbers.
(Formerly M5409)
6

%I M5409 #61 Dec 27 2023 08:53:48

%S 1,169,32761,6355441,1232922769,239180661721,46399815451081,

%T 9001325016847969,1746210653453054881,338755865444875798921,

%U 65716891685652451935769,12748738231151130799740241,2473189499951633722697670961,479786014252385791072548426169

%N Square hex numbers.

%C Numbers n of the form n = y^2 = 3*x^2 - 3*x + 1.

%D M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 19.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H G. C. Greubel, <a href="/A006051/b006051.txt">Table of n, a(n) for n = 1..435</a>

%H M. Gardner & N. J. A. Sloane, <a href="/A003154/a003154.pdf">Correspondence, 1973-74</a>

%H Giovanni Lucca, <a href="http://forumgeom.fau.edu/FG2018volume18/FG201808index.html">Integer Sequences and Circle Chains Inside a Circular Segment</a>, Forum Geometricorum, Vol. 18 (2018), 47-55.

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H Sociedad Magic Penny Patagonia, <a href="http://www.magicpenny.org/engteorema.htm">Leonardo en Patagonia</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HexNumber.html">Hex Number.</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (195,-195,1).

%F a(n) = A001570(n)^2.

%F a(1 - n) = a(n).

%F G.f.: x * (1 - 26*x + x^2) / ((1 - x) * (1 - 194*x + x^2)). - _Simon Plouffe_ in his 1992 dissertation

%F a(n) = 194*a(n-1) - a(n-2) - 24, a(1)=1, a(2)=169. - _James A. Sellers_, Jul 04 2000

%F a(n+1) = A003215(A001921(n)). - _Joerg Arndt_, Jan 02 2017

%F a(n) = (1/8)*(1 + 7*(ChebyshevU(n-1, 97) - ChebyshevU(n-2, 97))). - _G. C. Greubel_, Oct 07 2022

%e G.f. = x + 169*x^2 + 32761*x^3 + 6355441*x^4 + 1232922769*x^5 + ...

%t Rest@ CoefficientList[Series[x(1-26x+x^2)/((1-x)(1-194x+x^2)), {x,0,20}], x] (* _Michael De Vlieger_, Jan 02 2017 *)

%t LinearRecurrence[{195,-195,1},{1,169,32761},20] (* _Harvey P. Dale_, Nov 03 2017 *)

%o (PARI) {a(n) = sqr( real( (2 + quadgen( 12)) ^ (2*n - 1)) / 2)} /* _Michael Somos_, Feb 15 2011 */

%o (Magma) [(7*Evaluate(ChebyshevSecond(n),97) - 7*Evaluate(ChebyshevU(n-1), 97) + 1)/8: n in [1..30]]; // _G. C. Greubel_, Nov 04 2017; Oct 07 2022

%o (SageMath)

%o def A006051(n): return (7*chebyshev_U(n-1,97) - 7*chebyshev_U(n-2,97) + 1)/8

%o [A006051(n) for n in range(1,31)] # _G. C. Greubel_, Oct 07 2022

%Y Cf. A003500.

%Y Intersection of A000290 and A003215.

%Y Values of x are given by A001922, values of y by A001570.

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_