Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M0412 #41 Mar 07 2023 11:54:52
%S 0,2,3,1,8,10,11,9,12,14,15,13,4,6,7,5,32,34,35,33,40,42,43,41,44,46,
%T 47,45,36,38,39,37,48,50,51,49,56,58,59,57,60,62,63,61,52,54,55,53,16,
%U 18,19,17,24,26,27,25,28,30,31,29,20,22,23,21,128,130,131,129,136,138,139
%N Nim product 2*n.
%C From _Jianing Song_, Aug 10 2022: (Start)
%C Write n in quaternary (base 4), then replace each 1,2,3 by 2,3,1.
%C This is a permutation of the natural numbers; A004468 is the inverse permutation (since the nim product of 2 and 3 is 1). (End)
%D J. H. Conway, On Numbers and Games. Academic Press, NY, 1976, pp. 51-53.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Alois P. Heinz, <a href="/A006015/b006015.txt">Table of n, a(n) for n = 0..16383</a> (first 1001 terms from R. J. Mathar)
%H <a href="/index/Ni#Nimmult">Index entries for sequences related to Nim-multiplication</a>
%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F From _Jianing Song_, Aug 10 2022: (Start)
%F a(n) = A051775(2,n).
%F a(n) = 2*n if n has only digits 0 or 1 in quaternary (n is in A000695). Otherwise, a(n) < 2*n.
%F a(n) = n/3 if n has only digits 0 or 3 in quaternary (n is in A001196). Otherwise, a(n) > n/3.
%F a(n) = 3*n/2 if and only if n has only digits 0 or 2 in quaternary (n is in A062880). Proof: let n = Sum_i d_i*4^i, d(i) = 0,1,2,3. Write A = Sum_{d_i=1} 4^i, B = Sum_{d_i=3} 4^i, then a(n) = 3*n/2 if and only if 2*A + B = 3/2*(A + 3*B), or A = 7*B. If B != 0, then B is of the form (4*s+1)*4^t, but 7*B is not of this form. So the only possible case is A = B = 0, namely n has only digits 0 or 2. (End)
%p a:= proc(n) option remember; `if`(n=0, 0,
%p a(iquo(n, 4, 'r'))*4+[0, 2, 3, 1][r+1])
%p end:
%p seq(a(n), n=0..70); # _Alois P. Heinz_, Jan 25 2022
%t a[n_] := a[n] = If[n == 0, 0, {q, r} = QuotientRemainder[n, 4]; a[q]*4 + {0, 2, 3, 1}[[r + 1]]];
%t Table[a[n], {n, 0, 70}] (* _Jean-François Alcover_, May 20 2022, after _Alois P. Heinz_ *)
%o (PARI) a(n) = my(v=digits(n, 4), w=[0,2,3,1]); for(i=1, #v, v[i] = w[v[i]+1]); fromdigits(v, 4) \\ _Jianing Song_, Aug 10 2022
%o (Python)
%o def a(n, D=[0, 2, 3, 1]):
%o r, k = 0, 0
%o while n>0: r+=D[n%4]*4**k; n//=4; k+=1
%o return r
%o # _Onur Ozkan_, Mar 07 2023
%Y Row 2 of array in A051775.
%Y Cf. A004468-A004480, A000695, A062880, A001196.
%K nonn,easy,look
%O 0,2
%A _N. J. A. Sloane_.
%E More terms from _Erich Friedman_.