Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3897 #78 Oct 05 2022 05:02:10
%S 1,5,20,52,117,225,400,656,1025,1525,2196,3060,4165,5537,7232,9280,
%T 11745,14661,18100,22100,26741,32065,38160,45072,52897,61685,71540,
%U 82516,94725,108225,123136,139520,157505,177157,198612,221940,247285,274721,304400
%N Number of paraffins (see Losanitsch reference for precise definition).
%C This is also the square of the sum of the odd numbers plus the square of the sum of the even numbers, up to n. E.g., a(4) = (1+3)^2 + (2+4)^2 = 52. - _Scott R. Shannon_, Feb 20 2019
%C The area of a square whose side is a segment connecting the ends of a broken line (snake), the adjacent links of which are perpendicular and equal to the numbers 1, 2, 3, 4, ..., n. For example, a(5) = 9^2 + 6^2 = 117. - _Nicolay Avilov_, Aug 02 2022
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Vincenzo Librandi, <a href="/A006010/b006010.txt">Table of n, a(n) for n = 1..1000</a>
%H Nicolay Avilov, <a href="/A006010/a006010.png">Illustration of a(1)-a(6)</a>
%H Nicolay Avilov, <a href="https://elementy.ru/problems/2565/Lomanaya_v_kvadrate"> The problem of a broken line in a square</a> (in Russian).
%H S. M. Losanitsch, <a href="http://dx.doi.org/10.1002/cber.189703002144">Die Isomerie-Arten bei den Homologen der Paraffin-Reihe</a>, Chem. Ber. 30 (1897), 1917-1926.
%H S. M. Losanitsch, <a href="/A000602/a000602_1.pdf">Die Isomerie-Arten bei den Homologen der Paraffin-Reihe</a>, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (3,-1,-5,5,1,-3,1).
%F Sum of [ 1, 3, 9, ... ](A005994) + [ 0, 0, 1, 3, 9, ... ] + 2*[ 0, 1, 5, 15, 35, ... ](binomial(n, 4)).
%F If n is odd then a(n) = (1/8) * (n^4 + 2*n^3 + 2*n^2 + 2*n + 1) = Det(Transpose[M]*M) where M is the 2 X 3 matrix whose rows are [(n-1)/2, (n-1)/2], [(n-1)/2 + 1, 0] and [(n-1)/2 + 1, (n-1)/2 + 1]. If n is even then a(n) = (1/8) * (n^4 + 2*n^3 + 2*n^2) = Det(Transpose[M]*M) where M is the 2 X 3 matrix whose rows are [n/2, 0], [n/2, n/2] and [n/2 + 1, 0]. - _Gerald McGarvey_, Oct 30 2007
%F G.f.: -x*(x^4+2*x^3+6*x^2+2*x+1) / ((x-1)^5*(x+1)^2). - _Colin Barker_, Mar 20 2013
%F E.g.f.: (x*(7 + 15*x + 8*x^2 + x^3)*cosh(x) + (1 + 5*x + 15*x^2 + 8*x^3 + x^4)*sinh(x))/8. - _Stefano Spezia_, Jul 08 2020
%t CoefficientList[Series[-(x^4 + 2 x^3 + 6 x^2 + 2 x + 1)/((x - 1)^5 (x + 1)^2), {x, 0, 40}], x] (* _Vincenzo Librandi_, Oct 14 2013 *)
%t LinearRecurrence[{3,-1,-5,5,1,-3,1},{1,5,20,52,117,225,400},40] (* _Harvey P. Dale_, Dec 13 2018 *)
%o (PARI) Vec(-x*(x^4+2*x^3+6*x^2+2*x+1)/((x-1)^5*(x+1)^2) + O(x^100)) \\ _Colin Barker_, Oct 05 2015
%Y Cf. A005994, A186424 (2nd differences), A317614 (1st differences), A335648 (partial sums).
%K nonn,easy
%O 1,2
%A _N. J. A. Sloane_
%E More terms from _David W. Wilson_