login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = C(n+2,3) + C(n,3) + C(n-1,3).
(Formerly M3412)
2

%I M3412 #34 Jan 22 2018 21:12:03

%S 1,4,11,25,49,86,139,211,305,424,571,749,961,1210,1499,1831,2209,2636,

%T 3115,3649,4241,4894,5611,6395,7249,8176,9179,10261,11425,12674,14011,

%U 15439,16961,18580,20299,22121,24049,26086,28235,30499,32881,35384,38011,40765

%N a(n) = C(n+2,3) + C(n,3) + C(n-1,3).

%C Equals binomial transform of [1, 3, 4, 3, 0, 0, 0, ...]. Example: a(4) = 25 = (1, 3, 3, 1) dot (1, 3, 4, 3) = (1 + 9 + 12 + 3). - _Gary W. Adamson_, Jul 25 2008

%D S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A006004/b006004.txt">Table of n, a(n) for n = 1..1000</a>

%H S. M. Losanitsch, <a href="/A000602/a000602_1.pdf">Die Isomerie-Arten bei den Homologen der Paraffin-Reihe</a>, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4, -6, 4, -1).

%F a(n) = (n^3 - 2n^2 + 5n - 2)/2.

%F G.f.: (x^3+x^2+1)/(x-1)^4. - _Harvey P. Dale_, Jun 15 2011

%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), with a(0)=1, a(1)=4, a(2)=11, a(3)=25. - _Harvey P. Dale_, Jun 15 2011

%p A006004:=n->(n^3 - 2*n^2 + 5*n - 2)/2; seq(A006004(n), n=1..50); # _Wesley Ivan Hurt_, Feb 09 2014

%t Table[Binomial[n+2,3]+Binomial[n,3]+Binomial[n-1,3],{n,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,4,11,25},50] (* _Harvey P. Dale_, Jun 15 2011 *)

%o (PARI) a(n) = (n^3 - 2*n^2 + 5*n - 2)/2 \\ _Charles R Greathouse IV_, Feb 10 2017

%K nonn,easy,nice

%O 1,2

%A _N. J. A. Sloane_

%E Terms added by _Wesley Ivan Hurt_, Feb 09 2014