Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2202 #77 Nov 14 2024 23:49:18
%S 1,-3,0,6,-3,0,0,-6,0,6,0,0,6,-6,0,0,-3,0,0,-6,0,12,0,0,0,-3,0,6,-6,0,
%T 0,-6,0,0,0,0,6,-6,0,12,0,0,0,-6,0,0,0,0,6,-9,0,0,-6,0,0,0,0,12,0,0,0,
%U -6,0,12,-3,0,0,-6,0,0,0,0,0,-6,0,6,-6,0,0,-6,0,6,0,0,12,0,0,0,0,0,0,-12,0,12,0,0,0,-6,0,0
%N G.f.: s(1)^3/s(3), where s(k) = eta(q^k) and eta(q) is Dedekind's function, cf. A010815.
%C Unsigned sequence is expansion of theta series of hexagonal net with respect to a node.
%C Cubic AGM theta functions: a(q) (see A004016), b(q) (this: A005928), c(q) (A005882).
%C Denoted by a_3(n) in Kassel and Reutenauer 2015. - _Michael Somos_, Jun 04 2015
%D N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 79, Eq. (32.34).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Seiichi Manyama, <a href="/A005928/b005928.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from T. D. Noe)
%H J. M. Borwein and P. B. Borwein, <a href="http://dx.doi.org/10.1090/S0002-9947-1991-1010408-0">A cubic counterpart of Jacobi's identity and the AGM</a>, Trans. Amer. Math. Soc., 323 (1991), no. 2, 691-701. MR1010408 (91e:33012) see page 695.
%H J. M. Borwein, P. B. Borwein and F. Garvan, <a href="http://dx.doi.org/10.1090/S0002-9947-1994-1243610-6">Some Cubic Modular Identities of Ramanujan</a>, Trans. Amer. Math. Soc. 343 (1994), 35-47.
%H Christian Kassel and Christophe Reutenauer, <a href="https://arxiv.org/abs/1505.07229v3">The zeta function of the Hilbert scheme of n points on a two-dimensional torus</a>, arXiv:1505.07229v3 [math.AG], 2015. [A later version of this paper has a different title and different contents, and the number-theoretical part of the paper was moved to the publication below.]
%H Christian Kassel and Christophe Reutenauer, <a href="https://arxiv.org/abs/1610.07793">Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus</a>, arXiv:1610.07793 [math.NT], 2016.
%H N. J. A. Sloane, <a href="http://dx.doi.org/10.1063/1.527472">Theta series and magic numbers for diamond and certain ionic crystal structures</a>, J. Math. Phys. 28 (1987), 1653-1657.
%F a(n) is the coefficient of q^n in b(q)=eta(q)^3/eta(q^3) = (3/2)*a(q^3)-a(q)/2 where a(q)=theta(Hexagonal). - Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), May 07 2002
%F From _Michael Somos_, May 20 2005: (Start)
%F Euler transform of period 3 sequence [ -3, -3, -2, ...].
%F a(n) = -3 * b(n) except for a(0) = 1, where b()=A123477() is multiplicative with b(p^e) = -2 if p = 3 and e>0, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e)/2 if p == 2, 5 (mod 6).
%F G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 - 2*u*w^2 + u^2*w.
%F G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^2*u6 - 2*u1*u2*u6 + 4*u2^2*u6 - 3*u2*u3^2.
%F G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1*u2*u3 + u1^2*u3 - 3*u1*u6^2 + u2^2*u3. (End)
%F a(3*n + 2) = 0. a(3*n + 1) = -A005882(n), a(3*n) = A004016(n). - _Michael Somos_, Jul 15 2005
%F a(n) = -3 * A123477(n) unless n=0. |a(n)| = A113062(n).
%F Moebius transform is period 9 sequence [-3, 3, 9, -3, 3, -9, -3, 3, 0, ...]. - _Michael Somos_, Dec 25 2007
%F Expansion of b(q) = a(q^3) - c(q^3) in powers of q where a(), b(), c() are cubic AGM theta functions. - _Michael Somos_, Dec 25 2007
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 3^(3/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A033687.
%F G.f.: exp( sum(n>=1, (sigma(n)-sigma(3*n))*x^n/n ) ). - Joerg Arndt, Jul 30 2011
%F a(n) = (-1)^(mod(n, 3) = 1) * A113062(n). - _Michael Somos_, Sep 05 2014
%F a(2*n + 1) = -3 * A123530(n). a(4*n) = a(n). a(4*n + 1) = -3 * A253243(n). a(4*n + 2) = 0. a(4*n + 3) = 6 * A246838(n). a(6*n + 1) = -3 * A097195(n). a(6*n + 3) = 6 * A033762(n). - _Michael Somos_, Jun 04 2015
%F G.f.: 1 + Sum_{k>0} -3 * x^k / (1 + x^k + x^(2*k)) + 9 * x^(3*k) / (1 + x^(3*k) + x^(6*k)). - _Michael Somos_, Jun 04 2015
%F a(0) = 1, a(n) = -(3/n)*Sum_{k=1..n} A078708(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Apr 29 2017
%e G.f. = 1 - 3*q + 6*q^3 - 3*q^4 - 6*q^7 + 6*q^9 + 6*q^12 - 6*q^13 - 3*q^16 + ...
%t a[ n_] := SeriesCoefficient[ QPochhammer[ q]^3 / QPochhammer[ q^3], {q, 0, n}]; (* _Michael Somos_, May 24 2013 *)
%t a[ n_] := If[ n < 1, Boole[ n==0], -3 Sum[{1, -1, -3, 1, -1, 3, 1, -1, 0}[[ Mod[ d, 9, 1]]], {d, Divisors @ n}]]; (* _Michael Somos_, Sep 23 2013 *)
%o (PARI) {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); -3 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, -2, if( p%6==1, e+1, !(e%2)))))}; \\ _Michael Somos_, May 20 2005
%o (PARI) {a(n) = my(A = x * O(x^n)); polcoeff( eta(x + A)^3 / eta(x^3 + A), n)}; \\ _Michael Somos_, May 20 2005
%o (PARI) {a(n) = if( n<1, n==0, sumdiv(n, d, [0, -3, 3, 9, -3, 3, -9, -3, 3] [d%9 + 1]))}; \\ _Michael Somos_, Dec 25 2007
%o (PARI) N=66; x='x+O('x^N); gf=exp(sum(n=1,N,(sigma(n)-sigma(3*n))*x^n/n));
%o Vec(gf) \\ _Joerg Arndt_, Jul 30 2011
%o (PARI) lista(nn) = {q='q+O('q^nn); Vec(eta(q)^3/eta(q^3))} \\ _Altug Alkan_, Mar 20 2018
%o (Magma) A := Basis( ModularForms( Gamma1(9), 1), 100); A[1] - 3*A[2] + 6*A[4]; // _Michael Somos_, Jan 31 2015
%Y Cf. A005882, A033762, A097195, A113062, A123477, A123530, A246838, A253243.
%K sign
%O 0,2
%A _N. J. A. Sloane_
%E Edited by _M. F. Hasler_, May 07 2018