Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3262 #21 Mar 08 2020 08:40:08
%S 0,0,0,4,6,0,0,0,0,0,0,12,8,0,0,0,0,0,0,12,24,0,0,0,0,0,0,16,0,0,0,0,
%T 0,0,0,24,30,0,0,0,0,0,0,12,24,0,0,0,0,0,0,24,24,0,0,0,0,0,0,36,0,0,0,
%U 0,0,0,0,12,48,0,0,0,0,0,0,28,24,0,0,0,0,0,0,36,48,0,0,0,0,0,0,24,0,0,0,0,0
%N Theta series of diamond with respect to deep hole.
%C Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H G. C. Greubel, <a href="/A005927/b005927.txt">Table of n, a(n) for n = 0..1000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H N. J. A. Sloane and B. K. Teo, <a href="http://dx.doi.org/10.1063/1.449551">Theta series and magic numbers for close-packed spherical clusters</a>, J. Chem. Phys. 83 (1985) 6520-6534.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of 4 * q^3 * psi^3(q^8) + (phi^3(q^4) - phi^3(-q^4)) / 2 in powers of q where phi(), psi() are Ramanujan theta functions. - _Michael Somos_, Aug 17 2009
%F a(8*n + 0) = a(8*n + 1) = a(8*n + 2) = a(8*n + 5) = a(8*n + 6) = a(8*n + 7) = 0. - _Michael Somos_, Aug 17 2009
%F 4 * A008443(n) = a(8*n + 3). A005887(n) = a(8*n + 4). - _Michael Somos_, Aug 17 2009
%e 4*q^3 + 6*q^4 + 12*q^11 + 8*q^12 + 12*q^19 + 24*q^20 + 16*q^27 + ... - _Michael Somos_, Aug 17 2009
%t a[n_]:= SeriesCoefficient[4*q^3*QPochhammer[-q^8, q^8]^3* QPochhammer[q^16, q^16]^3 + (EllipticTheta[3, 0, q^4]^3 - EllipticTheta[3, 0, -q^4]^3)/2, {q, 0, n}]; Table[a[n], {n,0,50}] (* _G. C. Greubel_, Apr 01 2018 *)
%o (PARI) {a(n) = if( n<0, 0, if( n%8 == 3, n \= 8; polcoeff( 4 * sum(k=0, (sqrtint(8*n+1)-1)\2, x^((k^2+k)/2), x*O(x^n))^3, n), if( n%8 == 4, n /= 4; polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1 + x*O(x^n))^3, n), 0 )))} /* _Michael Somos_, Aug 17 2009 */
%K nonn
%O 0,4
%A _N. J. A. Sloane_