Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3843 #102 Sep 14 2022 02:00:51
%S 1,5,14,29,50,77,110,149,194,245,302,365,434,509,590,677,770,869,974,
%T 1085,1202,1325,1454,1589,1730,1877,2030,2189,2354,2525,2702,2885,
%U 3074,3269,3470,3677,3890,4109,4334,4565,4802,5045,5294,5549,5810,6077,6350,6629
%N Number of points on surface of square pyramid: 3*n^2 + 2 (n>0).
%C Also coordination sequence of the 5-connected (or bnn) net = hexagonal net X integers.
%C Also (except for initial term) numbers of the form 3n^2+2 that are not squares. All numbers 3n^2+2 are == 2 (mod 3), and hence not squares. - _Cino Hilliard_, Mar 01 2003, modified by _Franklin T. Adams-Watters_, Jun 27 2014
%C If a 2-set Y and a 3-set Z are disjoint subsets of an n-set X then a(n-4) is the number of 4-subsets of X intersecting both Y and Z. - _Milan Janjic_, Sep 08 2007
%C Sums of three consecutive squares: (n - 2)^2 + (n - 1)^2 + n^2 for n > 1. - _Keith Tyler_, Aug 10 2010
%D H. S. M. Coxeter, Polyhedral numbers, in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D A. F. Wells, Three-Dimensional Nets and Polyhedra, Fig. 15.1 (e).
%H Vincenzo Librandi, <a href="/A005918/b005918.txt">Table of n, a(n) for n = 0..1000</a>
%H Branko Grünbaum, <a href="http://faculty.washington.edu/moishe/branko/BG199.Uniform%20Tilings%20of%203-Space.pdf">Uniform tilings of 3-space</a>, Geombinatorics, 4 (1994), 49-56. See tiling #26.
%H Milan Janjic, <a href="https://pmf.unibl.org/wp-content/uploads/2017/10/enumfor.pdf">Two Enumerative Functions</a>.
%H Milan Janjic and Boris Petkovic, <a href="http://arxiv.org/abs/1301.4550">A Counting Function</a>, arXiv preprint arXiv:1301.4550, 2013. - From _N. J. A. Sloane_, Feb 13 2013
%H Milan Janjic and Boris Petkovic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Janjic/janjic45.html">A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers</a>, J. Int. Seq. 17 (2014), Article 14.3.5.
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992.
%H Reticular Chemistry Structure Resource (RCSR), <a href="http://rcsr.net/nets/bnn">The bnn tiling (or net)</a>.
%H B. K. Teo and N. J. A. Sloane, <a href="http://neilsloane.com/doc/magic1/magic1.html">Magic numbers in polygonal and polyhedral clusters</a>, Inorgan. Chem. 24 (1985),4545-4558.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F G.f.: (1 - x^2)*(1 - x^3)/(1 - x)^5 = (1+x)*(1+x+x^2)/(1-x)^3.
%F Euler transform of length 3 sequence [ 5, -1, -1]. - _Michael Somos_, Aug 07 2014
%F a(-n) = a(n) for all n in Z. - _Michael Somos_, Aug 07 2014
%F a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>3. - _Colin Barker_, Aug 07 2014
%F a(0) = 1; for n > 0, a(n) = A120328(n-1). - _Doug Bell_, Aug 18 2015
%F E.g.f.: (2+3*x+3*x^2)*exp(x)-1. - _Robert Israel_, Aug 18 2015
%F a(n) = A005448(n) + A005448(n+1), sum of 2 consecutive centered triangular numbers. - _R. J. Mathar_, Apr 28 2020
%F a(n) = (n - 1)^2 + n^2 + (n + 1)^2. - _Charlie Marion_, Aug 31 2021
%F From _Amiram Eldar_, Sep 14 2022: (Start)
%F Sum_{n>=0} 1/a(n) = coth(sqrt(2/3)*Pi)*Pi/(2*sqrt(6)) + 3/4.
%F Sum_{n>=0} (-1)^n/a(n) = cosech(sqrt(2/3)*Pi)*Pi/(2*sqrt(6)) + 3/4. (End)
%e G.f. = 1 + 5*x + 14*x^2 + 29*x^3 + 50*x^4 + 77*x^5 + 110*x^6 + 149*x^7 + ...
%p A005918:=-(z+1)*(z**2+z+1)/(z-1)**3; # _Simon Plouffe_ in his 1992 dissertation.
%t Join[{1}, Table[Plus@@(Range[n, n + 2]^2), {n, 0, 49}]] (* _Alonso del Arte_, Oct 27 2012 *)
%t CoefficientList[Series[(1 - x^2) (1 - x^3)/(1 - x)^5, {x, 0, 40}], x] (* _Vincenzo Librandi_, Aug 07 2014 *)
%t LinearRecurrence[{3,-3,1},{1,5,14,29},50] (* _Harvey P. Dale_, Dec 12 2015 *)
%o (PARI) sq3nsqp2(n) = { for(x=1,n, y = 3*x*x+2; print1(y, ", ") ) }
%o (PARI) {a(n) = 3*n^2 + 2 - (n==0)}; /* _Michael Somos_, Aug 07 2014 */
%Y Cf. A120328, A206399.
%Y Partial sums give A063488.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_