login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Truncated cube numbers.
(Formerly M5312)
2

%I M5312 #41 Sep 08 2022 08:44:34

%S 1,56,311,920,2037,3816,6411,9976,14665,20632,28031,37016,47741,60360,

%T 75027,91896,111121,132856,157255,184472,214661,247976,284571,324600,

%U 368217,415576,466831,522136,581645,645512,713891,786936,864801,947640,1035607,1128856

%N Truncated cube numbers.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Reinhard Zumkeller, <a href="/A005912/b005912.txt">Table of n, a(n) for n = 0..10000</a>

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H B. K. Teo and N. J. A. Sloane, <a href="http://dx.doi.org/10.1021/ic00220a025">Magic numbers in polygonal and polyhedral clusters</a>, Inorgan. Chem. 24 (1985), 4545-4558.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4, -6, 4, -1).

%F a(n) = (3*n+1)^3 - 8*(n)*(n+1)*(n+2)/6 = (77/3)*n^3 + 23*n^2 + (19/3)*n + 1.

%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=56, a(2)=311, a(3)=920. - _Harvey P. Dale_, Aug 14 2011

%p A005912:=(1+52*z+93*z**2+8*z**3)/(z-1)**4; # conjectured by _Simon Plouffe_ in his 1992 dissertation

%t Table[(3n+1)^3-8(n)(n+1)(n+2)/6,{n,0,30}] (* or *) LinearRecurrence[ {4,-6,4,-1},{1,56,311,920},30] (* _Harvey P. Dale_, Aug 14 2011 *)

%o (Haskell)

%o a005912 n = (n * (n * (77 * n + 69) + 19) + 3) `div` 3 :: Integer

%o -- _Reinhard Zumkeller_, Aug 09 2014

%o (Magma) [(3*n+1)^3-8*(n)*(n+1)*(n+2)/6: n in [0..40]] // _Vincenzo Librandi_, Aug 09 2014

%o (PARI) a(n)=(3*n+1)^3-8*(n)*(n+1)*(n+2)/6 \\ _Charles R Greathouse IV_, Feb 10 2017

%K nonn,easy,nice

%O 0,2

%A _N. J. A. Sloane_

%E More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 22 1999