Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4898 #105 Sep 08 2022 08:44:34
%S 1,13,55,147,309,561,923,1415,2057,2869,3871,5083,6525,8217,10179,
%T 12431,14993,17885,21127,24739,28741,33153,37995,43287,49049,55301,
%U 62063,69355,77197,85609,94611,104223,114465,125357,136919,149171,162133,175825,190267,205479
%N Centered icosahedral (or cuboctahedral) numbers, also crystal ball sequence for f.c.c. lattice.
%C Called "magic numbers" in some chemical contexts.
%C Partial sums of A005901(n). - _Lekraj Beedassy_, Oct 30 2003
%C Equals binomial transform of [1, 12, 30, 20, 0, 0, 0, ...]. - _Gary W. Adamson_, Aug 01 2008
%C Crystal ball sequence for A_3 lattice. - _Michael Somos_, Jun 03 2012
%D H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A005902/b005902.txt">Table of n, a(n) for n = 0..1000</a>
%H S. Bjornholm, <a href="http://dx.doi.org/10.1080/00107519008213781">Clusters, condensed matter in embryonic form</a>, Contemp. Phys. 31 1990 pp. 309-324.
%H J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).
%H Nicolas Gastineau, Olivier Togni, <a href="https://arxiv.org/abs/1806.08136">Coloring of the d-th power of the face-centered cubic grid</a>, arXiv:1806.08136 [cs.DM], 2018.
%H D. R. Herrick, <a href="https://chemistry.uoregon.edu/profile/dherrick/">Home Page</a> (displays these numbers as sizes of clusters in chemistry)
%H Xiaogang Liang, Ilyar Hamid, and Haiming Duan, <a href="https://doi.org/10.1063/1.4954741">Dynamic stabilities of icosahedral-like clusters and their ability to form quasicrystals</a>,>, AIP Advances 6, 065017 (2016).
%H T. P. Martin, <a href="http://dx.doi.org/10.1016/0370-1573(95)00083-6">Shells of atoms</a>, Phys. Reports, 273 (1996), 199-241, eq. (11).
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H B. K. Teo and N. J. A. Sloane, <a href="http://dx.doi.org/10.1021/ic00220a025">Magic numbers in polygonal and polyhedral clusters</a>, Inorgan. Chem. 24 (1985), 4545-4558.
%H K. Urner, <a href="http://www.4dsolutions.net/ocn/sphpack2.html">Cuboctahedral Sphere Packing</a>
%H <a href="/index/Cor#crystal_ball">Index entries for crystal ball sequences</a>
%H <a href="/index/Fa#fcc">Index entries for sequences related to f.c.c. lattice</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F a(n) = (2*n+1)*(5*n^2+5*n+3)/3.
%F For n > 0, n*a(n) = (Sum_{i=0..n-1} a(i)) + 2*A005891(n)*A000217(n). - _Bruno Berselli_, Feb 02 2011
%F a(-1 - n) = -a(n). - _Michael Somos_, Jun 03 2012
%F From _Indranil Ghosh_, Apr 08 2017: (Start)
%F G.f.: (x^3 + 9x^2 + 9x + 1)/(x - 1)^4.
%F E.g.f.: (1/3)*exp(x)*(10x^3 + 45x^2 + 36x + 3).
%F (End)
%F a(n) = A100171(n+1) - A008778(n-1) = A100174(n+1) - A000290(n) = A005917(n+1) - A006331(n) = A051673(n+1) + A000578(n). - _Bruce J. Nicholson_, Jul 05 2018
%e a(4) = 147 = (1, 3, 3, 1) dot (1, 12, 30, 20) = (1 + 36 + 90 + 20). - _Gary W. Adamson_, Aug 01 2008
%e G.f. = 1 + 13*x + 55*x^2 + 147*x^3 + 309*x^4 + 561*x^5 + 923*x^6 + 1415*x^7 + ...
%p A005902 := n -> (2*n+1)*(5*n^2+5*n+3)/3;
%p A005902:=(z+1)*(z**2+8*z+1)/(z-1)**4; # _Simon Plouffe_ in his 1992 dissertation
%t f[n_] := (2n + 1)(5n^2 + 5n + 3)/3; Array[f, 36, 0] (* _Robert G. Wilson v_, Feb 02 2011 *)
%t LinearRecurrence[{4,-6,4,-1},{1,13,55,147},50] (* _Harvey P. Dale_, Oct 08 2015 *)
%t CoefficientList[Series[(x^3 + 9*x^2 + 9*x + 1)/(x - 1)^4, {x, 0, 50}], x] (* _Indranil Ghosh_, Apr 08 2017 *)
%o (PARI) {a(n) = (2*n + 1) * (5*n^2 + 5*n + 3) / 3}; /* _Michael Somos_, Jun 03 2012 */
%o (PARI) x='x+O('x^50); Vec((x^3 + 9*x^2 + 9*x + 1)/(x - 1)^4) \\ _Indranil Ghosh_, Apr 08 2017
%o (Magma) [(2*n+1)*(5*n^2+5*n+3)/3: n in [0..30]]; // _G. C. Greubel_, Dec 01 2017
%o (Python)
%o def a(n): return (2*n+1)*(5*n**2+5*n+3)//3
%o print([a(n) for n in range(40)]) # _Michael S. Branicky_, Jan 13 2021
%Y (1/12)*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
%Y The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
%Y Cf. A100171, A100174, A051673.
%K nonn,easy,nice
%O 0,2
%A _N. J. A. Sloane_