The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005898 Centered cube numbers: n^3 + (n+1)^3.
(Formerly M4616)
112

%I M4616 #117 Mar 20 2023 18:52:20

%S 1,9,35,91,189,341,559,855,1241,1729,2331,3059,3925,4941,6119,7471,

%T 9009,10745,12691,14859,17261,19909,22815,25991,29449,33201,37259,

%U 41635,46341,51389,56791,62559,68705,75241,82179,89531,97309,105525,114191,123319,132921

%N Centered cube numbers: n^3 + (n+1)^3.

%C Write the natural numbers in groups: 1; 2,3,4; 5,6,7,8,9; 10,11,12,13,14,15,16; ..... and add the groups, i.e., a(n) = Sum_{j=n^2-2(n-1)..n^2} j. - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Sep 05 2001

%C The numbers 1, 9, 35, 91, etc. are divisible by 1, 3, 5, 7, etc. Therefore there are no prime numbers in this list. 9 is divisible by 3 and every third number after 9 is also divisible by 3. 35 is divisible by 5 and 7 and every fifth number after 35 is also divisible by 5 and every seventh number after 35 is also divisible by 7. This pattern continues indefinitely. - Howard Berman (howard_berman(AT)hotmail.com), Nov 07 2008

%C n^3 + (n+1)^3 = (2n+1)*(n^2+n+1), hence all terms are composite. - _Zak Seidov_, Feb 08 2011

%C This is the order of an n-ball centered at a node in the Kronecker product (or direct product) of three cycles, each of whose lengths is at least 2n+2. - _Pranava K. Jha_, Oct 10 2011

%C Positive y values of 4*x^3 - 3*x^2 = y^2. - _Bruno Berselli_, Apr 28 2018

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A005898/b005898.txt">Table of n, a(n) for n = 0..1000</a>

%H Pranava K. Jha, <a href="http://dx.doi.org/10.1109/81.974881">Perfect r-domination in the Kronecker product of three cycles</a>, IEEE Trans. Circuits and Systems-I: Fundamental Theory and Applications, vol. 49, no. 1, pp. 89 - 92, Jan. 2002.

%H T. P. Martin, <a href="http://dx.doi.org/10.1016/0370-1573(95)00083-6">Shells of atoms</a>, Phys. Reports, 273 (1996), 199-241, eq. (10).

%H Michael Penn, <a href="https://www.youtube.com/watch?v=d4Y6harH5cY">what's the pattern, Kenneth?</a>, YouTube video, 2021.

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H B. K. Teo and N. J. A. Sloane, <a href="http://dx.doi.org/10.1021/ic00220a025">Magic numbers in polygonal and polyhedral clusters</a>, Inorgan. Chem. 24 (1985), 4545-4558.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CenteredCubeNumber.html">Centered Cube Number</a>

%H D. Zeitlin, <a href="http://www.jstor.org/stable/2319798">A family of Galileo sequences</a>, Amer. Math. Monthly 82 (1975), 819-822.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F a(n) = Sum_{i=0..n} A005897(i), partial sums. - _Jonathan Vos Post_, Feb 06 2011

%F G.f.: (x^2+4*x+1)*(1+x)/(1-x)^3. - _Simon Plouffe_ (see MAPLE section) and _Colin Barker_, Jan 02 2012; edited by _N. J. A. Sloane_, Feb 07 2018

%F a(n) = A037270(n+1) - A037270(n). - _Ivan N. Ianakiev_, May 13 2012

%F a(n) = A000217(n+1)^2 - A000217(n-1)^2. - _Bob Selcoe_, Mar 25 2016

%F a(n) = A005408(n) * A002061(n+1). - _Miquel Cerda_, Oct 05 2016

%F From _Ilya Gutkovskiy_, Oct 06 2016: (Start)

%F E.g.f.: (1 + 8*x + 9*x^2 + 2*x^3)*exp(x).

%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

%F a(n) = (A081435(n))^2 - (A081435(n) - 1)^2. - _Sergey Pavlov_, Mar 01 2017

%p A005898:=(z+1)*(z**2+4*z+1)/(z-1)**4; # _Simon Plouffe_ in his 1992 dissertation

%t a[n_]:=n^3; Table[a[n]+a[n+1], {n,0,100}] (* _Vladimir Joseph Stephan Orlovsky_, Jan 03 2009 *)

%t CoefficientList[Series[(1 + 5 x + 5 x^2 + x^3)/(1 - x)^4,{x, 0, 40}], x] (* _Vincenzo Librandi_, Dec 16 2015 *)

%o (Sage) [i^3+(i+1)^3 for i in range(0,39)] # _Zerinvary Lajos_, Jul 03 2008

%o (Python)

%o A005898_list, m = [], [12, -6, 2, 1]

%o for _ in range(10**2):

%o A005898_list.append(m[-1])

%o for i in range(3):

%o m[i+1] += m[i] # _Chai Wah Wu_, Dec 15 2015

%o (Magma) [n^3+(n+1)^3: n in [0..40]]; // _Vincenzo Librandi_, Dec 16 2015

%o (PARI) a(n)=n^3 + (n+1)^3 \\ _Anders Hellström_, Dec 16 2015

%Y (1/12)*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

%Y Cf. A003215, A000537, A000578. - _Vladimir Joseph Stephan Orlovsky_, Jan 03 2009

%Y Partial sums of A005897.

%Y The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 03:50 EDT 2024. Contains 372497 sequences. (Running on oeis4.)