login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Theta series of f.c.c. lattice with respect to tetrahedral hole.
(Formerly M3429)
6

%I M3429 #42 Feb 21 2018 07:18:49

%S 4,12,12,16,24,12,24,36,12,28,36,24,36,36,24,24,60,36,28,48,12,60,60,

%T 24,48,48,36,48,60,24,52,84,48,24,60,36,48,96,36,72,48,36,72,60,48,52,

%U 96,36,60,96,24,72,108,24,48,60,72,96,84,60,48,108,36,52,72,60,108,108,36,48,108

%N Theta series of f.c.c. lattice with respect to tetrahedral hole.

%C Empirically, the number of integral quadruples with sum = 1, sum-of-squares = 2n-1. - _Colin Mallows_, Dec 31 2016

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H G. C. Greubel, <a href="/A005886/b005886.txt">Table of n, a(n) for n = 0..1000</a>

%H G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/D3.html">Home page for this lattice</a>

%H N. J. A. Sloane and B. K. Teo, <a href="http://dx.doi.org/10.1063/1.449551">Theta series and magic numbers for close-packed spherical clusters</a>, J. Chem. Phys. 83 (1985) 6520-6534.

%H <a href="/index/Fa#fcc">Index entries for sequences related to f.c.c. lattice</a>

%F a(n) = 1/2 * A005878(n) = 2 * A005869(n) = 4 * A008443(n). - _Michael Somos_, May 31 2012

%e 4 + 12*x + 12*x^2 + 16*x^3 + 24*x^4 + 12*x^5 + 24*x^6 + 36*x^7 + 12*x^8 + ...

%t QP = QPochhammer; CoefficientList[4(QP[q^2]^2/QP[q])^3 + O[q]^50, q] (* _Jean-François Alcover_, Jul 04 2017, after _Michael Somos_ *)

%Y Cf. A005869, A005878, A008443. Partial sums is A121054. Cf also A278081-A278086.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_

%E Terms a(50) onward added by _G. C. Greubel_, Feb 20 2018