Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4509 #52 Mar 12 2021 22:24:41
%S 8,32,48,64,104,96,112,192,144,160,256,192,248,320,240,256,384,384,
%T 304,448,336,352,624,384,456,576,432,576,640,480,496,832,672,544,768,
%U 576,592,992,768,640,968,672,864,960,720,896,1024,960,784,1248,816,832,1536
%N Theta series of D_4 lattice with respect to deep hole.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C The D_4 lattice is the set of all integer quadruples [a, b, c, d] where a + b + c + d is even. The deep holes are quadruples [a, b, c, d] where each coordinate is half an odd integer and where a + b + c + d is even. - _Michael Somos_, May 23 2012
%D J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 118.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A005879/b005879.txt">Table of n, a(n) for n = 0..10000</a>
%H G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/D4.html">Home page for this lattice</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%H <a href="/index/Da#D4">Index entries for sequences related to D_4 lattice</a>
%F Expansion of Jacobi theta_2(q)^4/(2q) in powers of q^2. - _Michael Somos_, Apr 11 2004
%F Expansion of q^(-1/2) * 8 * (eta(q^2)^2 / eta(q))^4 in powers of q. - _Michael Somos_, Apr 11 2004
%F Expansion of 8 * psi(x)^4 in powers of x where psi() is a Ramanujan theta function. - _Michael Somos_, May 23 2012
%F Expansion of (phi(q)^4 - phi(-q)^4) / (2 * q) in powers of q^2. - _Michael Somos_, May 23 2012
%F G.f.: 8 * (Product_{k>0} (1 - x^k) * (1 + x^k)^2)^4. - _Michael Somos_, Apr 11 2004
%F a(n) = 8 * A008438(n) = 4 * A005880(n) = A000118(2*n + 1) = - A096727(2*n + 1). - _Michael Somos_, Nov 01 2006
%e 8 + 32*x + 48*x^2 + 64*x^3 + 104*x^4 + 96*x^5 + 112*x^6 + 192*x^7 + ...
%e 8*q + 32*q^3 + 48*q^5 + 64*q^7 + 104*q^9 + 96*q^11 + 112*q^13 + ...
%e .
%e For n = 2 the objects counted are the ways to represent the integer 5 = (2*n+1) as a sum of 4 squares, 0 and negative numbers allowed.
%e [-2,-1,0,0], [-2,0,-1,0], [-2,0,0,-1], [-2,0,0,1], [-2,0,1,0], [-2,1,0,0],
%e [-1,-2,0,0], [-1,0,-2,0], [-1,0,0,-2], [-1,0,0,2], [-1,0,2,0], [-1,2,0,0],
%e [0,-2,-1,0], [0,-2,0,-1], [0,-2,0,1], [0,-2,1,0], [0,-1,-2,0], [0,-1,0,-2],
%e [0,-1,0,2], [0,-1,2,0], [0,0,-2,-1], [0,0,-2,1], [0,0,-1,-2], [0,0,-1,2],
%e [0,0,1,-2], [0,0,1,2], [0,0,2,-1], [0,0,2,1], [0,1,-2,0], [0,1,0,-2],
%e [0,1,0,2], [0,1,2,0], [0,2,-1,0], [0,2,0,-1], [0,2,0,1], [0,2,1,0],
%e [1,-2,0,0], [1,0,-2,0], [1,0,0,-2], [1,0,0,2], [1,0,2,0], [1,2,0,0],
%e [2,-1,0,0], [2,0,-1,0], [2,0,0,-1], [2,0,0,1], [2,0,1,0], [2,1,0,0].
%e - _Peter Luschny_, Nov 03 2015
%p S:= series(JacobiTheta2(0,q)^4/(2*q), q, 202):
%p seq(coeff(S,q,2*j),j=0..100); # _Robert Israel_, Nov 03 2015
%t (* a(n) gives the number of ways to represent the integer 2n+1 as a sum of 4 squares *) a[n_] := SquaresR[4, 2n+1]; Table[a[n], {n, 0, 52}] (* _Jean-François Alcover_, Nov 03 2015 *)
%t terms = 53; QP = QPochhammer; s = 8 QP[q^2]^8/QP[q]^4 + O[q]^terms; CoefficientList[s, q] (* _Jean-François Alcover_, Jul 07 2017, after _Michael Somos_ *)
%o (PARI) {a(n) = if( n<0, 0, 8 * sigma(2*n + 1))} /* _Michael Somos_, Apr 11 2004 */
%o (PARI) q='q+O('q^66); Vec(8*(eta(q^2)^2/eta(q))^4) \\ _Joerg Arndt_, Nov 03 2015
%Y Cf. A000118, A005880, A008438, A096727.
%K nonn,easy,nice
%O 0,1
%A _N. J. A. Sloane_