Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Sep 08 2022 08:44:34
%S 1,0,1,0,2,0,2,0,3,0,4,0,5,0,6,1,7,1,8,2,10,2,11,3,13,4,14,5,16,6,18,
%T 7,20,8,22,10,24,11,26,13,29,14,31,16,34,18,36,20,39,22,42,24,45,26,
%U 48,29,51,31,54,34,58,36,61,39,65,42,68,45,72,48,76,51
%N Molien series for 3-dimensional representation of Z2 X (double cover of A6), u.g.g.r. # 27 of Shephard and Todd.
%D J. H. Conway and N. J. A. Sloane, computed circa 1977.
%H Vincenzo Librandi, <a href="/A005868/b005868.txt">Table of n, a(n) for n = 0..1000</a>
%H G. C. Shephard and J. A. Todd, <a href="http://dx.doi.org/10.4153/CJM-1954-028-3">Finite unitary reflection groups</a>, Canadian J. Math. 6, (1954). 274--304. MR0059914 (15,600b).
%H <a href="/index/Mo#Molien">Index entries for Molien series</a>
%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,1,1,-1,-1,0,-1,0,1).
%F G.f.: (1-x+x^2)*(1+x-x^3-x^4-x^5+x^7+x^8)/((1-x)^3*(1+x)^2*(1+x^2)*(1+x+x^2+x^3+x^4)). - _Colin Barker_, Jan 08 2014
%F a(n) ~ 1/80*n^2. - _Ralf Stephan_, Apr 29 2014
%F a(n) = a(n-2)+a(n-4)+a(n-5)-a(n-6)-a(n-7)-a(n-9)+a(n-11). - _Wesley Ivan Hurt_, May 24 2021
%p (1+x^45)/(1-x^6)/(1-x^12)/(1-x^30):
%p seq(coeff(series(expand(%), x, 3*n+1), x, 3*n), n=0..100);
%t CoefficientList[Series[(1-x+x^2)(1+x-x^3-x^4-x^5+x^7+x^8)/((1-x)^3 (1+x)^2 (1+x^2)(1+x+x^2+x^3+x^4), {x, 0, 70}], x]] (* _Vincenzo Librandi_, Apr 29 2014 *)
%t LinearRecurrence[{0,1,0,1,1,-1,-1,0,-1,0,1},{1,0,1,0,2,0,2,0,3,0,4},100] (* _Harvey P. Dale_, Aug 29 2016 *)
%o (PARI) Vec((x^10-x^5+1)/(-x^11+x^9+x^7+x^6-x^5-x^4-x^2+1) + O(x^100)) \\ _Colin Barker_, Jan 08 2014
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 65); Coefficients(R!( (1+x^15)/((1 - x^2)*(1-x^4)*(1-x^10)) )); // _G. C. Greubel_, Feb 06 2020
%o (Sage)
%o def A005868_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( (1+x^15)/((1-x^2)*(1-x^4)*(1-x^10)) ).list()
%o A005868_list(65) # _G. C. Greubel_, Feb 06 2020
%K nonn,easy,nice
%O 0,5
%A _N. J. A. Sloane_