Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3625 #156 Dec 08 2024 02:42:30
%S 1,4,28,220,1820,15504,134596,1184040,10518300,94143280,847660528,
%T 7669339132,69668534468,635013559600,5804731963800,53194089192720,
%U 488526937079580,4495151581425648,41432089765583440,382460951663844400
%N a(n) = binomial(4n,n).
%C Start off with 0 balls in a box. Find the number of ways you can throw 3 balls back out. Then continue to throw 4 balls into the box after each stage. (I.e., the first stage is 0. Then at the next stage there are 4 ways to throw 3 balls back out.) - Ruppi Rana (ruppirana007(AT)hotmail.com), Mar 03 2004
%C Central coefficients of A094527. - _Paul Barry_, Mar 08 2011
%C This is the case m = 2n in Catalan's formula (2m)!*(2n)!/(m!*(m+n)!*n!) - see Umberto Scarpis in References. - _Bruno Berselli_, Apr 27 2012
%C A generating function in terms of a (labyrinthine) solution to a depressed quartic equation is given in the Copeland link for signed A005810. - _Tom Copeland_, Oct 10 2012
%C Conjecture: a(n) == 4 (mod n^3) iff n is prime. - _Gary Detlefs_, Apr 03 2013
%C For prime p, the congruence a(p) = binomial(4*p,p) = 4 (mod p^3) is a known generalization of Wolstenholme's theorem. See Mestrovic, Section 6, equation 35. - _Peter Bala_, Dec 28 2014
%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
%D Umberto Scarpis, Sui numeri primi e sui problemi dell'analisi indeterminata in Questioni riguardanti le matematiche elementari, Nicola Zanichelli Editore (1924-1927, third Edition), page 11.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Vaclav Kotesovec, <a href="/A005810/b005810.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..100 from T. D. Noe, terms 101..213 from Muniru A Asiru)
%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H Tom Copeland, <a href="https://tcjpn.files.wordpress.com/2013/04/discrdeltas9-6-20122.pdf">Discriminating Deltas, Depressed Equations, and Generalized Catalan Numbers</a>, 2012, pp. 5-6.
%H Romeo Meštrović, <a href="http://arxiv.org/abs/1111.3057">Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011)</a>, arXiv:1111.3057 [math.NT], 2011.
%H Ruppi Rana, <a href="http://web.njit.edu/~rr93/p12.htm">Title?</a> [Broken link]
%F a(n) is asymptotic to c*(256/27)^n/sqrt(n) with c = sqrt(2 / (3 Pi)) = 0.460658865961780639... - _Benoit Cloitre_, Jan 26 2003; corrected by _Charles R Greathouse IV_, Dec 14 2006
%F a(n) = Sum_{k=0..2n} binomial(2n,k)*binomial(2n,k-n). - _Paul Barry_, Mar 08 2011
%F G.f.: g/(4-3*g) where g = 1+x*g^4 is the g.f. of A002293. - _Mark van Hoeij_, Nov 11 2011
%F D-finite with recurrence: 3*n*(3*n-1)*(3*n-2)*a(n) - 8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1) = 0. - _R. J. Mathar_, Dec 02 2012
%F a(n) = binomial(4*n,n-1)*(3*n+1)/n. - _Gary Detlefs_, Apr 03 2013
%F a(n) = C(4*n-1,n-1)*C(16*n^2,2)/(3*n*C(4*n+1,3)), n>0. - _Gary Detlefs_, Jan 02 2014
%F a(n) = Sum_{i,j,k = 0..n} binomial(n,i)*binomial(n,j)*binomial(n,k)* binomial(n,i+j+k). - _Peter Bala_, Dec 28 2014
%F a(n) = GegenbauerC(n, -2*n, -1). - _Peter Luschny_, May 07 2016
%F From _Ilya Gutkovskiy_, Nov 22 2016: (Start)
%F O.g.f.: 3F2(1/4,1/2,3/4; 1/3,2/3; 256*x/27).
%F E.g.f.: 3F3(1/4,1/2,3/4; 1/3,2/3,1; 256*x/27). (End)
%F a(n) = hypergeom([-3*n, -1*n], [1], 1). - _Peter Luschny_, Mar 19 2018
%F RHS of the identity Sum_{k = 0..2*n} (-1)^(n+k)*binomial(4*n, k)* binomial(4*n, 2*n-k) = binomial(4*n,n). - _Peter Bala_, Oct 07 2021
%F From _Peter Bala_, Feb 20 2022: (Start)
%F The o.g.f. A(x) satisfies the differential equation
%F (-256*x^3 + 27*x^2)*A(x)''' + (-1152*x^2 + 54*x)*A(x)'' + (-816*x + 6)*A(x)' - 24*A(x) = 0 with A(0) = 1, A'(0) = 4 and A''(0) = 56.
%F Algebraic equation: (1 - A(x))*(1 + 3*A(x))^3 + 256*x*A(x)^4 = 0.
%F Sum_{n >= 1} a(n)*( x*(3*x + 4)^3/(256*(1 + x)^4) )^n = x. (End)
%F From _Amiram Eldar_, Dec 07 2024: (Start)
%F Sum_{n>=1} 1/a(n) = A378806.
%F Sum_{n>=1} (-1)^n/a(n) = A378807. (End)
%e G.f. = 1 + 4*x + 28*x^2 + 220*x^3 + 1820*x^4 + 15504*x^5 + 134596*x^6 + ...
%p seq(binomial(4*n,n),n=0..20); # _Muniru A Asiru_, Mar 19 2018
%t Table[Binomial[4n,n],{n,0,19}] (* _Geoffrey Critzer_, Sep 15 2013 *)
%o (Magma) [ Binomial(4*n,n): n in [0..100] ]; // _Vincenzo Librandi_, Apr 13 2011
%o (Haskell)
%o a005810 n = a007318 (4*n) n -- _Reinhard Zumkeller_, Mar 04 2012
%o (PARI) a(n) = binomial(4*n, n); \\ _Altug Alkan_, Mar 19 2018
%o (GAP) List([0..20],n->Binomial(4*n,n)); # _Muniru A Asiru_, Mar 19 2018
%o (Python)
%o from math import comb
%o def A005810(n): return comb(n<<2,n) # _Chai Wah Wu_, Aug 01 2023
%Y binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A001449 (k = 5), A004355 (k = 6), A004368 (k = 7), A004381 (k = 8), A169958 - A169961 (k = 9 thru 12).
%Y Cf. A007318, A182400, A262261, A378806, A378807.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_
%E More terms from _Henry Bottomley_, Oct 06 2000
%E Corrected by _T. D. Noe_, Jan 16 2007