login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of phylogenetic trees with n labels.
(Formerly M1519)
3

%I M1519 #42 Nov 16 2021 05:09:51

%S 1,2,5,18,107,1008,13113,214238,4182487,94747196,2440784645,

%T 70431957258,2249856084803,78802876705608,3002702793753489,

%U 123649410977736950,5471808106109912815,258948617502187143188,13049542794706527317597,697673361673877090147490

%N Number of phylogenetic trees with n labels.

%C Stirling transform of [ 1, 1, 1, 4, 26, 236, ... ] = A000311(n-1).

%C Series-reduced trees where each leaf is a nonempty subset of the set of n labels. [_Christian G. Bower_, Dec 15 1999]

%D Foulds, L. R.; Robinson, R. W. Enumeration of phylogenetic trees without points of degree two. Ars Combin. 17 (1984), A, 169-183. Math. Rev. 85f:05045

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Alois P. Heinz, <a href="/A005805/b005805.txt">Table of n, a(n) for n = 1..381</a> (first 100 terms from Vincenzo Librandi)

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>

%F From _Vaclav Kotesovec_, Nov 16 2021: (Start)

%F E.g.f.: exp(2*x)/4 - (1 + LambertW(-exp(exp(x)/2 - 1)/2))^2.

%F a(n) ~ 2 * log(2)^(3/2) * n^(n-2) / (exp(n) * (log(2) + log(log(2)))^(n - 3/2)).

%F (End)

%p stirtr:= proc(p) proc(n) add(p(k) *Stirling2(n,k), k=0..n) end end: b:= proc(n) option remember; if n<=1 then n elif n=2 then 1 else (n+1) *b(n-1) +2*add(binomial(n-1, k) *b(k) *b(n-k), k=2..n-2) fi end:

%p a:= stirtr(n->`if`(n<2,1, b(n-1))):

%p seq(a(n), n=1..20); # _Alois P. Heinz_, Sep 15 2008

%t max = 18; a311 = CoefficientList[ InverseSeries[ Series[ 1 + 2x - E^x, {x, 0, max}], x], x]*Range[0, max]!; b[1] = 1; b[k_] := a311[[k]]; a[n_] := Sum[ b[k]*StirlingS2[n, k], {k, 1, n}]; Table[ a[n], {n, 1, max}] (* _Jean-François Alcover_, Feb 22 2012 *)

%Y Cf. A000311, A005804.

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_

%E More terms from _Christian G. Bower_, Dec 15 1999