Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I M3837 #20 Dec 18 2021 20:39:03
%S 1,-5,-13,132,-233,-305,1404,-910,-1533,1382,698,3996,-9363,-1587,
%T 14717,-7198,-265,0,-8156,-8032,16481,25134,32766,-120680,-33928,
%U 206871,-136720,17724,0,8628,58947,-121746,199279,164908,-907425
%N Coefficients of modular function denoted G_6(tau) by Atkin.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A. O. L. Atkin, <a href="https://doi.org/10.1017/S0017089500000045">Proof of a conjecture of Ramanujan</a>, Glasgow Math. J., 8 (1967), 14-32.
%F Convolution of A005760 and A005762.
%e q^-6 - 5*q^-5 - 13*q^-4 + 132*q^-3 - 233*q^-2 - 305*q^-1 + 1404 - 910*q + ...
%t A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {_, _}][[All, 2]]];
%t A005760 = A@005760;
%t A005762 = A@005762;
%t offset = -6;
%t a[n_] := Sum[A005760[[k+1]] A005762[[n-offset-k+1]], {k, 0, n-offset}];
%t a /@ Range[offset, 28] (* _Jean-François Alcover_, Jan 13 2020 *)
%Y Cf. A005760, A005762.
%K sign,easy,nice
%O -6,2
%A _N. J. A. Sloane_
%E More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 15 2000