login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005755
Number of identity matched trees with n nodes.
(Formerly M3517)
2
0, 0, 0, 1, 4, 16, 64, 252, 1018, 4182, 17510, 74510, 322034, 1410362, 6251114, 27998532, 126583634, 577079333, 2650573354, 12256481666, 57021299394, 266754944481, 1254245360430, 5924659521632, 28105641930102, 133853504339029, 639801068848128
OFFSET
1,5
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Rodica Simion, Trees with 1-factors and oriented trees, Discrete Math., 88 (1991), 93-104.
Rodica Simion, Trees with 1-factors and oriented trees, Discrete Math., 88 (1981), 97. (Annotated scanned copy)
FORMULA
a(n) ~ c * d^n / n^(5/2), where d = A246312 = 5.2490324912281705791649522..., c = 0.089035519570392123219315... . - Vaclav Kotesovec, Aug 25 2014
MAPLE
with(numtheory): b2:= proc(n) option remember; local m; `if`(n=1, 1, 2/(n-1) *add(b2(m) *add((-1)^((n-m)/d+1) *d*b2(d), d=divisors(n-m)), m=1..n-1)) end: c2:= proc(n) option remember; local m; `if`(n=1, 1, 1/(n-1) *add(c2(m) *add((-1)^((n-m)/d+1) *d*b2(d), d=divisors(n-m)), m=1..n-1)) end: a2:= n-> (b2(n) -add(b2(m) *b2(n-m), m=1..n-1) -`if`(irem(n, 2)=0, b2(n/2), c2((n+1)/2)))/2: seq(a2(n), n=1..30); # Alois P. Heinz, Aug 04 2009
MATHEMATICA
b2[n_] := b2[n] = If [n == 1, 1, 2/(n-1)*Sum[b2[m]*Sum[(-1)^((n-m)/d+1)*d*b2[d], {d, Divisors[n-m]}], {m, 1, n-1}]]; c2[n_] := c2[n] = If [n == 1, 1, 1/(n-1)*Sum[c2[m]*Sum[(-1)^((n-m)/d+1)*d*b2[d], {d, Divisors[n-m]}], {m, 1, n-1}]]; a2[n_] := (b2[n] - Sum[b2[m]*b2[n-m], {m, 1, n-1}] - If[Mod[n, 2] == 0, b2[n/2], c2[(n+1)/2]])/2; Table[a2[n], {n, 1, 30}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Alois P. Heinz, Aug 04 2009
STATUS
approved