Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M1514 #67 Dec 26 2020 17:31:40
%S 1,2,5,18,66,266,1111,4792,21124,94888,432415,1994828,9296712,
%T 43706722,207030398,987130456,4733961435,22819241034,110500644857,
%U 537295738556,2622248720234,12840953621208,63074566121245,310693364823376,1534374047239554,7595642577152762
%N Number of rooted identity matched trees with n nodes.
%C Also number of rooted identity trees with n nodes and 2-colored non-root nodes. - _Christian G. Bower_, Apr 15 1998
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Alois P. Heinz, <a href="/A005753/b005753.txt">Table of n, a(n) for n = 1..1000</a>
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=429">Encyclopedia of Combinatorial Structures 429</a>
%H R. Simion, <a href="http://dx.doi.org/10.1016/0012-365X(91)90061-6">Trees with 1-factors and oriented trees</a>, Discrete Math., 88 (1991), 93-104.
%H R. Simion, <a href="/A005750/a005750.pdf">Trees with 1-factors and oriented trees</a>, Discrete Math., 88 (1981), 97. (Annotated scanned copy)
%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%F G.f.: x*Product_{n>=1} (1 + x^n)^(2*a(n)) = Sum_{n>=1} a(n)*x^n. - _Paul D. Hanna_, Dec 31 2011
%F a(n) ~ c * d^n / n^(3/2), where d = A246312 = 5.249032491228170579164952216..., c = 0.192066288645200371237879149260484794708740197522264442948290580404909605849... - _Vaclav Kotesovec_, Aug 25 2014, updated Dec 26 2020
%F G.f. A(x) satisfies: A(x) = x*exp(2*Sum_{k>=1} (-1)^(k+1)*A(x^k)/k). - _Ilya Gutkovskiy_, Apr 13 2019
%e G.f.: A(x) = x + 2*x^2 + 5*x^3 + 18*x^4 + 66*x^5 + 266*x^6 + ...
%e where A(x) = x*(1+x)^2*(1+x^2)^4*(1+x^3)^10*(1+x^4)^36*(1+x^5)^132*... (the exponents are A038077(n), n>=1).
%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p add(binomial(2*a(i), j)*b(n-i*j, i-1), j=0..n/i)))
%p end:
%p a:= n-> `if`(n=1, 1, b((n-1)$2)):
%p seq(a(n), n=1..40); # _Alois P. Heinz_, Aug 01 2013
%t b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[2*a[i], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := If[n == 1, 1, b[n-1, n-1]]; Table[a[n] // FullSimplify, {n, 1, 30}] (* _Jean-François Alcover_, Mar 17 2014, after _Alois P. Heinz_ *)
%o (PARI) {a(n)=polcoeff(x*prod(k=1, n-1, (1+x^k+x*O(x^n))^(2*a(k))), n)} /* _Paul D. Hanna_ */
%Y Cf. A038077, A246312.
%Y Column k=2 of A255517.
%K nonn,eigen
%O 1,2
%A _N. J. A. Sloane_