login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Related to n-th powers of polynomials.
(Formerly M0183)
4

%I M0183 #46 Mar 25 2024 06:44:00

%S 1,1,1,2,1,12,1,2,3,10,1,12,1,14,15,2,1,12,1,10,21,22,1,12,5,26,3,14,

%T 1,60,1,2,33,34,35,12,1,38,39,10,1,84,1,22,15,46,1,12,7,10,51,26,1,12,

%U 55,14,57,58,1,60,1,62,21,2,65,132,1,34,69,70,1,12,1,74,15,38,77,156,1

%N Related to n-th powers of polynomials.

%C The originally published terms of this sequence were incorrect for a small number of n, the smallest of which is n=14 (see the paper of Zhu for more details). - _Daniel Zhu_, Feb 16 2024

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Robert Israel, <a href="/A005730/b005730.txt">Table of n, a(n) for n = 1..10000</a> (first 150 terms from Daniel Zhu).

%H T. Chinburg and M. Henriksen, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa29/aa2932.pdf">Sums of k-th powers in the ring of polynomials with integer coefficients</a>, Acta Arithmetica, 29 (1976), 227-250.

%H Daniel G. Zhu, <a href="https://arxiv.org/abs/2402.10121">A correction to a result of Chinburg and Henriksen on powers of integer polynomials</a>, arXiv:2402.10121 [math.NT], 2024.

%F a(n) = A005729(n)/A005731(n).

%F a(n) = 1 if n is prime, a(n) = 2*s(n) if n is divisible by 6, a(n) = s(n) otherwise, where s(n) is the squarefree kernel of n (A007947); i.e., s(1)=1 and if n = Product(p_i^(e_i)) then s(n) = Product(p_i) [From Zhu]. - _Sean A. Irvine_, Aug 18 2016 [Corrected by _Daniel Zhu_, Feb 16 2024]

%p A7947:= proc(n) convert(numtheory:-factorset(n),`*`) end:

%p f:= proc(n) if isprime(n) then 1 elif n mod 6 = 0 then 2*A7947(n) else A7947(n) fi end proc:

%p map(f, [$1..100]); # _Robert Israel_, Mar 10 2024

%t a[n_] := If[PrimeQ[n], 1, With[{s = Times @@ FactorInteger[n][[All, 1]]}, If[Mod[n, 6] == 0, 2s, s]]];

%t Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Mar 25 2024 *)

%o (Python)

%o from math import prod

%o from sympy import isprime, primefactors

%o def A005730(n): return 1 if isprime(n) else prod(primefactors(n))<<(not n%6) # _Chai Wah Wu_, Mar 10 2024

%Y Cf. A005729, A005731.

%K nonn

%O 1,4

%A _N. J. A. Sloane_

%E More terms from _Emeric Deutsch_, Jan 24 2005

%E Incorrect terms corrected by _Daniel Zhu_, Feb 16 2024