login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of Twopins positions.
(Formerly M1004)
0

%I M1004 #37 Mar 03 2024 10:42:51

%S 1,2,4,6,9,14,22,36,57,90,139,214,329,506,780,1200,1845,2830,4337,

%T 6642,10170,15572,23838,36486,55828,85408,130641,199814,305599,467366,

%U 714735,1092980,1671335,2555650,3907781,5975202,9136288,13969560,21359528

%N Number of Twopins positions.

%D R. K. Guy, ``Anyone for Twopins?,'' in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H R. K. Guy, <a href="/A005251/a005251_1.pdf">Anyone for Twopins?</a>, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [Annotated scanned copy, with permission]

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (2, 0, -2, 1, 2, -2, 0, 0, 0, -1).

%F G.f.: x^7/((1-x^2-x^5)*(1-2*x+x^2-x^5)). - _Simon Plouffe_ in his 1992 dissertation.

%F 2*a(n) = A005253(n-2) - A005686(n). - _R. J. Mathar_, May 29 2019

%p a:= n-> (Matrix(10, (i,j)-> if (i=j-1) then 1 elif j=1 then [2,0,-2,1,2,-2,0,0,0,-1][i] else 0 fi)^n)[1,8]: seq(a(n), n=7..70); # _Alois P. Heinz_, Aug 14 2008

%t LinearRecurrence[{2, 0, -2, 1, 2, -2, 0, 0, 0, -1}, {1, 2, 4, 6, 9, 14, 22, 36, 57, 90}, 40] (* _Jean-François Alcover_, Nov 12 2015 *)

%K nonn,easy

%O 7,2

%A _N. J. A. Sloane_.

%E More terms from _Alois P. Heinz_, Aug 14 2008