login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005639
Number of self-converse oriented graphs with n nodes.
(Formerly M1518)
3
1, 2, 5, 18, 102, 848, 12452, 265759, 10454008, 598047612, 63620448978, 9974635937844, 2905660724913768, 1268590412128132389, 1023130650177394611897, 1258149993547327488275562, 2834863110716120144290954314, 9900859865505110360978721901778
OFFSET
1,2
REFERENCES
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
R. W. Robinson, Asymptotic number of self-converse oriented graphs, pp. 255-266 of Combinatorial Mathematics (Canberra, 1977), Lect. Notes Math. 686, 1978.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..50 (terms 1..27 from R. W. Robinson)
R. W. Robinson, Asymptotic number of self-converse oriented graphs, pp. 255-266 of Combinatorial Mathematics (Canberra, 1977), Lect. Notes Math. 686, 1978. (Annotated scanned copy)
Sridharan, M. R., Self-complementary and self-converse oriented graphs , Nederl. Akad. Wetensch. Proc. Ser. A 73=Indag. Math. 32 1970 441-447. [Annotated scanned copy] See page 446.
MATHEMATICA
permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[Sum[If[Mod[v[[i]] v[[j]], 2] == 0, GCD[v[[i]], v[[j]]], 0], {j, 1, i - 1}], {i, 2, Length[v]}] + Sum[If[Mod[v[[i]], 2] == 0, 2 Quotient[v[[i]] - 2, 4] + 1, 0], {i, 1, Length[v]}];
a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p], {p, IntegerPartitions[n]}]; s/n!];
Array[a, 18] (* Jean-François Alcover, Aug 17 2019, after Andrew Howroyd *)
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, if(v[i]*v[j]%2==0, gcd(v[i], v[j])))) + sum(i=1, #v, if(v[i]%2==0, (v[i]-2)\4*2+1))}
a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Sep 16 2018
CROSSREFS
Cf. A002785.
Sequence in context: A322396 A007127 A279207 * A093730 A366449 A304918
KEYWORD
nonn,easy,nice
STATUS
approved