Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2608 #107 Aug 02 2024 01:59:21
%S 3,7,3,9,5,5,8,1,3,6,1,9,2,0,2,2,8,8,0,5,4,7,2,8,0,5,4,3,4,6,4,1,6,4,
%T 1,5,1,1,1,6,2,9,2,4,8,6,0,6,1,5,0,0,4,2,0,9,4,7,4,2,8,0,2,4,1,7,3,5,
%U 0,1,8,2,0,4,0,0,2,8,0,8,2,3,4,4,3,0,4,3,1,7,0,8,7,2,5,0,5,6,8,9,8,1,6,0,3
%N Decimal expansion of Artin's constant Product_{p=prime} (1-1/(p^2-p)).
%C On Simon Plouffe's web page (and in the book freely available at Gutenberg project) the value is given with an error of +1e-31, as "...651641..." instead of "...641641...". In the reference [Wrench, 1961] cited there, these digits are correct. They are also correct on the Plouffe's Inverter page, as computed by Oliveira e Silva, who comments it took 1 hour at 200 MHz with Mathematica. Using _Amiram Eldar_'s PARI program, the same 500 digits are computed instantly (less than 0.1 sec). - _M. F. Hasler_, Apr 20 2021
%C Named after the Austrian mathematician Emil Artin (1898-1962). - _Amiram Eldar_, Jun 20 2021
%D Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Harry J. Smith, <a href="/A005596/b005596.txt">Table of n, a(n) for n = 0..1000</a>
%H Ivan Cherednik, <a href="http://arxiv.org/abs/0810.2325">A note on Artin's constant</a>, arXiv:0810.2325 [math.NT], 2008.
%H Henri Cohen, <a href="http://www.math.u-bordeaux.fr/~cohen/hardylw.dvi">High-precision computation of Hardy-Littlewood constants</a>, (1998).
%H Henri Cohen, <a href="/A221712/a221712.pdf">High-precision computation of Hardy-Littlewood constants</a>. [pdf copy, with permission]
%H Steven R. Finch, <a href="https://doi.org/10.1017/9781316997741">Mathematical Constants II</a>, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 156 (constant C7).
%H R. J. Mathar, <a href="http://arxiv.org/abs/0903.2514">Hardy-Littlewood constants embedded into infinite products over all positive integers</a>, arXiv:0903.2514 [math.NT], 2009-2001; constant A_1^(1).
%H Pieter Moree, <a href="https://arxiv.org/abs/math/0412262">Artin's primitive root conjecture - a survey</a>, arXiv:math/0412262 [math.NT], 2004-2012.
%H Pieter Moree, <a href="http://dx.doi.org/10.1016/j.disc.2005.03.004">The formal series Witt transform</a>, Discr. Math., Vol. 295, No. 1-3 (2005), pp. 143-160. See p. 159.
%H G. Niklasch, <a href="/A001692/a001692.html">Some number theoretical constants: 1000-digit values</a>. [Cached copy]
%H G. Niklasch, <a href="https://web.archive.org/web/20001209004100/http://www.gn-50uma.de/alula/essays/Moree/Moree-details.en.shtml">Artin's constant</a>.
%H Simon Plouffe, <a href="https://web.archive.org/web/20030816184018/http://www.worldwideschool.org/library/books/sci/math/MiscellaneousMathematicalConstants/chap8.html">The Artin's Constant=product(1-1/(p**2-p), p=prime)</a> [backup on web.archive.org; chapter 8 of the free Gutenberg.org/ebooks/634]. [Warning: the value given in this reference is incorrect, cf. comment!]
%H Tomás Oliveira e Silva and Plouffe's Inverter, <a href="http://www.plouffe.fr/simon/constants/artin.txt">The first 500 digits of Artin's constant</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ArtinsConstant.html">Artin's constant</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FullReptendPrime.html">Full Reptend Prime</a>.
%H R. G. Wilson v, <a href="/A005596/a005596.pdf">Letter to N. J. A. Sloane, Aug. 1993</a>.
%H John W. Wrench, Jr., <a href="http://dx.doi.org/10.1090/S0025-5718-1961-0124305-0">Evaluation of Artin's constant and the twin-prime constant</a>, Math. Comp., Vol. 15, No. 76 (1961), pp. 396-398.
%H <a href="/index/Ar#Artin">Index entries for sequences related to Artin's conjecture</a>.
%F Equals Product_{j>=2} 1/Zeta(j)^A006206(j), where Zeta = A013661, A002117 etc. is Riemann's zeta function. - _R. J. Mathar_, Feb 14 2009
%F Equals Sum_{k>=1} mu(k)/(k*phi(k)), where mu is the Moebius function (A008683) and phi is the Euler totient function (A000010). - _Amiram Eldar_, Mar 11 2020
%F Equals 1/A065488. - _Vaclav Kotesovec_, Jul 17 2021
%e 0.37395581361920228805472805434641641511162924860615...
%t a = Exp[-NSum[ (LucasL[n] - 1)/n PrimeZetaP[n], {n, 2, Infinity}, PrecisionGoal -> 500, WorkingPrecision -> 500, NSumTerms -> 100000]]; RealDigits[a, 10, 111][[1]] (* _Robert G. Wilson v_, Sep 03 2014 taken from Mathematica's Help file on PrimeZetaP *)
%o (PARI) prodinf(n=2,1/zeta(n)^(sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1)))/n)) \\ _Charles R Greathouse IV_, Aug 27 2014
%o (PARI) prodeulerrat(1-1/(p^2-p)) \\ _Amiram Eldar_, Mar 12 2021
%Y Cf. A048296, A065414, A001913, A001122.
%K nonn,cons
%O 0,1
%A _N. J. A. Sloane_
%E More terms from Tomás Oliveira e Silva (http://www.ieeta.pt/~tos)