login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = 0, a(1) = 1, a(2n) = a(n), a(2n+1) = a(n+1) - a(n).
(Formerly M0048)
34

%I M0048 #92 Jan 15 2022 09:50:46

%S 0,1,1,0,1,-1,0,1,1,-2,-1,1,0,1,1,0,1,-3,-2,1,-1,2,1,-1,0,1,1,0,1,-1,

%T 0,1,1,-4,-3,1,-2,3,1,-2,-1,3,2,-1,1,-2,-1,1,0,1,1,0,1,-1,0,1,1,-2,-1,

%U 1,0,1,1,0,1,-5,-4,1,-3,4,1,-3,-2,5,3,-2,1,-3,-2,1,-1,4,3,-1,2,-3,-1,2,1,-3,-2,1,-1,2,1,-1,0,1,1,0,1,-1,0,1,1

%N a(0) = 0, a(1) = 1, a(2n) = a(n), a(2n+1) = a(n+1) - a(n).

%C If "-" in the definition is changed to "+", we get Stern's diatomic sequence A002487.

%C Sequence is 2-regular.

%C Let M = a triangular matrix with (1, 1, -1, 0, 0, 0, ...) in every column >k=1 shifted down twice from the previous column. Then A005590 starting with 1 = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. - _Gary W. Adamson_, Apr 13 2010

%C a(A001969(n)) <= 0; a(A000069(n)) > 0. - _Reinhard Zumkeller_, Apr 11 2012

%D B. Reznick, A new sequence with many properties, Abstract 809-10-185, Abstracts Amer. Math. Soc., 5 (1984), p. 16. [See link below]

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A005590/b005590.txt">Table of n, a(n) for n = 0..10000</a>

%H J.-P. Allouche and M. Mendes France, <a href="http://arxiv.org/abs/1202.0211">Stern-Brocot polynomials and power series</a>, arXiv preprint arXiv:1202.0211 [math.NT], 2012.

%H J.-P. Allouche and J. Shallit, <a href="http://www.cs.uwaterloo.ca/~shallit/Papers/as0.ps">The ring of k-regular sequences</a>, Theoretical Computer Sci., 98 (1992), 163-197.

%H Michael Gilleland, <a href="/selfsimilar.html">Some Self-Similar Integer Sequences</a>

%H Bruce Reznick, <a href="http://projecteuclid.org/euclid.ijm/1256045729">Some extremal problems for continued fractions</a>, Ill. J. Math., 29 (1985), 261-279.

%H Bruce Reznick, <a href="/A005590/a005590.png">Letter to N. J. A. Sloane, Jun 03 1991</a>; also annotated scanned copy of B. Reznick, A new sequence with many properties, Abstract 809-10-185, Abstracts Amer. Math. Soc., 5 (1984), p. 16.

%H Ralf Stephan, <a href="https://arxiv.org/abs/math/0307027">Divide-and-conquer generating functions. I. Elementary sequences</a>, arXiv:math/0307027 [math.CO], 2003.

%F G.f.: x*Product_{k>=0} (1+x^(2^k) - x^2^(k+1)). - _Ralf Stephan_, Apr 26 2003

%F Conjecture: a(3n)=0 iff n in A003714. - _Ralf Stephan_, May 02 2003

%F a(n) = Sum_{k=0..n-1} (-1)^A010060(n-k-1)*(binomial(k, n-k-1) mod 2). - _Paul Barry_, Mar 26 2005

%F G.f. satisfies A(x) = (1 + 1/x - x) * A(x^2). - _Michael Somos_, Sep 17 2003

%F limsup log(|a(n)|)/(log n) = 0.4309... [Reznick] - _N. J. A. Sloane_, Jul 23 2016

%F From _Chai Wah Wu_, Dec 20 2016: (Start)

%F a(2^k*n+1) = a(n+1) - k*a(n);

%F a(2^k*n+3) = a(n) for k >= 2;

%F a(2^k*n+5) = -a(2^(k-1)*n+1) for k >= 3;

%F a(2^k*n+7) = a(2^(k-2)*n+1) for k >= 4;

%F a(2^k*n+2^k-1) = a(n) if k is even;

%F a(2^k*n+2^k-1) = a(n+1)-a(n)= a(2*n+1) if k is odd.

%F This implies that

%F a(2^k+1) = 1-k;

%F a(2^k+3) = 1 for k >= 2;

%F a(2^k+5) = k-2 for k >= 3;

%F a(2^k+7) = 3-k for k >= 4;

%F a(2^k-1) = 0 if k is even;

%F a(2^k-1) = 1 if k is odd.

%F (End)

%e G.f. = x + x^2 + x^4 - x^5 + x^7 + x^8 - 2*x^9 - x^10 + x^12 + x^13 + x^14 + ...

%p A005590 := proc(n) option remember; if n <= 1 then n; elif n mod 2 = 0 then A005590(n/2); else A005590((n+1)/2)-A005590((n-1)/2); fi; end;

%t a[0] = 0; a[1] = 1; a[n_] := a[n] = If[OddQ[n], a[(n-1)/2 + 1] - a[(n-1)/2], a[n/2]]; Table[a[n], {n, 0, 104}] (* _Jean-François Alcover_, Nov 27 2012 *)

%o (PARI) {a(n) = if( n<=1, n>0, if(n%2, a(n\2+1) - a(n\2), a(n/2)))}; /* _Michael Somos_, Sep 17 2003 */

%o (Haskell)

%o import Data.List (transpose)

%o a005590 n = a005590_list !! n

%o a005590_list = 0 : 1 : concat (tail $ transpose

%o [a005590_list, zipWith (-) (tail a005590_list) a005590_list])

%o -- _Reinhard Zumkeller_, Apr 11 2012

%o (Python)

%o l=[0, 1]

%o for n in range(2, 101):

%o l.append(l[n//2] if n%2==0 else l[(n + 1)//2] - l[(n - 1)//2])

%o print(l) # _Indranil Ghosh_, Jun 28 2017

%Y Cf. A002487, A182093 (partial sums).

%K sign,nice,easy,look

%O 0,10

%A _N. J. A. Sloane_

%E More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 28 2003

%E Signs corrected by _Ralf Stephan_, Apr 26 2003