Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M1813 #68 Aug 28 2022 08:22:55
%S 2,7,52,2133,2590407,3374951541062,5695183504479116640376509,
%T 16217557574922386301420514191523784895639577710480,
%U 131504586847961235687181874578063117114329409897550318273792033024340388219235081096658023517076950
%N Number of free binary trees admitting height n.
%C a(n) is the number of free 3-trees which have a rooting as a binary tree of height n.
%C a(n) <= A002658(n+1) [Harary, et al.] "This is because any tree with a binary rooting of height h corresponds to a planted 3-tree of height h+1. [...] In general there are trees with more than one binary rooting of height h, so equality does not hold". - _Michael Somos_, Sep 02 2012
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H David Wassermann, <a href="/A005588/b005588.txt">Table of n, a(n) for n = 1..12</a>
%H Harary, Frank; Palmer, Edgar M.; Robinson, Robert W., <a href="http://cobweb.cs.uga.edu/~rwr/publications/binary.pdf">Counting free binary trees admitting a given height</a>, J. Combin. Inform. System Sci. 17 (1992), no. 1-2, 175--181. MR1216977 (94c:05039)
%H Harary, Frank; Palmer, Edgar M.; Robinson, Robert W., <a href="/A005588/a005588.pdf">Counting free binary trees admitting a given height</a>, J. Combin. Inform. System Sci. 17 (1992), no. 1-2, 175-181. (Annotated scanned copy)
%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%H <a href="/index/Cor#core">Index entries for "core" sequences</a>
%F Harary et al. give a complicated recurrence.
%e +---------+
%e | o o o | a(1) = 2
%e | | \| |
%e | o o |
%e +---------------------------------------------+
%e | o o o o o o o o o o o o o o o | a(2) = 7
%e | | \| | \| | | | \| \| |/ |
%e | o o o o o o o o o o o o |
%e | | | \| \| \| \ / \| |
%e | o o o o o o o |
%e +---------------------------------------------+
%e a(3) = 52 while A002658(4) = 56 because there are 56 - 52 = 4 free binary trees admitting height 3 which have two rootings, while the rest have only one rooting. The four trees have degree sequences 32111, 322111, 3222111, 3321111. - _Michael Somos_, Sep 02 2012
%t bin2[n_] = Binomial[n, 2];
%t bin3[n_] = Binomial[n, 3];
%t p[0] = q[0] = 0;
%t p[1] = q[1] = 1;
%t q[h1_] := q[h1] = With[{h = h1-1}, q[h] + p[h]];
%t p[h1_] := p[h1] = With[{h = h1-1}, bin2[1 + p[h]] + p[h] q[h]];
%t a[h_] := a[h] = bin3[2 + p[h]] + bin2[1 + p[h]] q[h];
%t b[h_] := b[h] = bin2[1 + p[h]];
%t e[h_, i_] := e[h, i] = 1 + Sum[d[j, i], {j, h-1}];
%t d[h_, h_] := 0; d[h_, i_] := p[h] /; i > h;
%t d[h1_, i1_] := d[h1, i1] = With[{h = h1-1, i = i1-1}, bin2[1 + d[h, i]] + d[h, i] e[h, i]]; d[h_, 1] := d[h, 1] = p[h] - p[h-1];
%t e[h_, 1] := e[h, 1] = p[h-1];
%t t1[h_] := Sum[a[h-i] - bin3[2 + d[h-i, i]] - bin2[1 + d[h-i, i]] e[h-i, i], {i, Quotient[h, 2]}];
%t t2[h_] := Sum[b[h-i+1] - bin2[1 + d[h-i+1, i]], {i, Quotient[h+1, 2]}];
%t t[h_] := bin2[1 + p[h]] + t1[h] + t2[h];
%t Table[t[n], {n, 1, 12}] (* _Jean-François Alcover_, Apr 22 2013, program corrected and improved by _Michael Somos_ *)
%Y Cf. A002658, A006894.
%K nonn,easy,core,nice
%O 1,1
%A _N. J. A. Sloane_; entry revised by _N. J. A. Sloane_, Aug 31 2012