Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I M4235 #23 Dec 26 2021 21:21:06
%S 6,40,174,644,2268,8020,28666,103696,379450,1402276,5227366,19633732,
%T 74230146,282273744,1078902168,4142578832,15970882784,61798680076,
%U 239921541412,934258870200,3648030627298,14280474288676
%N Number of n-step self-avoiding walks on hexagonal lattice from (0,0) to (2,2).
%C The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H D. S. McKenzie, <a href="http://dx.doi.org/10.1088/0305-4470/6/3/009">The end-to-end length distribution of self-avoiding walks</a>, J. Phys. A 6 (1973), 338-352.
%H G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A2.html">Home page for hexagonal (or triangular) lattice A2</a>
%Y Cf. A001335, A003289, A003290, A003291, A005549, A005550, A005551, A005552.
%K nonn,walk,more
%O 4,1
%A _N. J. A. Sloane_
%E More terms and title improved by _Sean A. Irvine_, Feb 15 2016
%E a(23)-a(25) from _Bert Dobbelaere_, Jan 15 2019