login
Number of n-step self-avoiding walks on hexagonal lattice from (0,0) to (1,2).
(Formerly M3012)
7

%I M3012 #22 Dec 26 2021 21:20:38

%S 3,16,57,184,601,2036,7072,25088,90503,330836,1222783,4561058,

%T 17145990,64888020,246995400,944986464,3631770111,14013725268,

%U 54268946152,210842757798,821569514032,3209925357702,12572219405144

%N Number of n-step self-avoiding walks on hexagonal lattice from (0,0) to (1,2).

%C The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H D. S. McKenzie, <a href="http://dx.doi.org/10.1088/0305-4470/6/3/009">The end-to-end length distribution of self-avoiding walks</a>, J. Phys. A 6 (1973), 338-352.

%H G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A2.html">Home page for hexagonal (or triangular) lattice A2</a>

%Y Cf. A001335, A003289, A003290, A003291, A005549, A005551, A005552, A005553.

%K nonn,walk,more

%O 3,1

%A _N. J. A. Sloane_

%E More terms and title improved by _Sean A. Irvine_, Feb 15 2016

%E a(23)-a(25) from _Bert Dobbelaere_, Jan 15 2019