login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

From a Fibonacci-like differential equation.
(Formerly M4487)
6

%I M4487 #33 Jan 05 2025 19:51:33

%S 0,1,1,8,16,224,608,13320,41760,1366152,4440312,215100192,655723440,

%T 48242081328,121651212720,14627299801728,24367884018048,

%U 5768946415383552,2780730890516736,2872938805170308352,-2941729703083507968,1764460446550873413120

%N From a Fibonacci-like differential equation.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Seiichi Manyama, <a href="/A005445/b005445.txt">Table of n, a(n) for n = 0..434</a>

%H P. R. J. Asveld & N. J. A. Sloane, <a href="/A005442/a005442.pdf">Correspondence, 1987</a>

%H P. R. J. Asveld, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/27-4/asveld.pdf">Fibonacci-like differential equations with a polynomial nonhomogeneous term</a>, Fib. Quart. 27 (1989), 303-309.

%F From _Vladeta Jovovic_, Sep 29 2003: (Start)

%F a(n) = Sum_{k=0..n} Stirling1(n, k)*k!*Fibonacci(k).

%F E.g.f.: log(1+x)/(1 - log(1+x) - log(1+x)^2). (End)

%F a(n) ~ n! * (-1)^(n+1) * (1+1/sqrt(5)) * exp(n*(1+sqrt(5))/2) /(2*(exp((1+sqrt(5))/2)-1)^(n+1)). - _Vaclav Kotesovec_, Oct 01 2013

%t CoefficientList[Series[Log[1+x]/(1-Log[1+x]-(Log[1+x])^2), {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Oct 01 2013 *)

%o (PARI) a(n) = sum(k=0, n, k!*fibonacci(k)*stirling(n, k, 1)); \\ _Michel Marcus_, Oct 30 2015

%o (Magma) [(&+[Factorial(j)*Fibonacci(j)*StirlingFirst(n,j): j in [0..n]]): n in [0..30]]; // _G. C. Greubel_, Nov 21 2022

%o (SageMath)

%o def A005445(n): return sum((-1)^(n+k)*factorial(k)*fibonacci(k)* stirling_number1(n,k) for k in range(n+1))

%o [A005445(n) for n in range(31)] # _G. C. Greubel_, Nov 21 2022

%Y Cf. A000045, A000142, A005444, A048994, A320352.

%K sign,changed

%O 0,4

%A _Simon Plouffe_

%E More terms from _Vladeta Jovovic_, Sep 29 2003