Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2400 #441 Nov 10 2024 01:01:52
%S 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,
%T 49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,
%U 95,97,99,101,103,105,107,109,111,113,115,117,119,121,123,125,127,129,131
%N The odd numbers: a(n) = 2*n + 1.
%C Leibniz's series: Pi/4 = Sum_{n>=0} (-1)^n/(2n+1) (cf. A072172).
%C Beginning of the ordering of the natural numbers used in Sharkovski's theorem - see the Cielsielski-Pogoda paper.
%C The Sharkovski ordering begins with the odd numbers >= 3, then twice these numbers, then 4 times them, then 8 times them, etc., ending with the powers of 2 in decreasing order, ending with 2^0 = 1.
%C Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(6).
%C Also continued fraction for coth(1) (A073747 is decimal expansion). - _Rick L. Shepherd_, Aug 07 2002
%C a(1) = 1; a(n) is the smallest number such that a(n) + a(i) is composite for all i = 1 to n-1. - _Amarnath Murthy_, Jul 14 2003
%C Smallest number greater than n, not a multiple of n, but containing it in binary representation. - _Reinhard Zumkeller_, Oct 06 2003
%C Numbers n such that phi(2n) = phi(n), where phi is Euler's totient (A000010). - _Lekraj Beedassy_, Aug 27 2004
%C Pi*sqrt(2)/4 = Sum_{n>=0} (-1)^floor(n/2)/(2n+1) = 1 + 1/3 - 1/5 - 1/7 + 1/9 + 1/11 ... [since periodic f(x)=x over -Pi < x < Pi = 2(sin(x)/1 - sin(2x)/2 + sin(3x)/3 - ...) using x = Pi/4 (Maor)]. - _Gerald McGarvey_, Feb 04 2005
%C For n > 1, numbers having 2 as an anti-divisor. - _Alexandre Wajnberg_, Oct 02 2005
%C a(n) = shortest side a of all integer-sided triangles with sides a <= b <= c and inradius n >= 1.
%C First differences of squares (A000290). - _Lekraj Beedassy_, Jul 15 2006
%C The odd numbers are the solution to the simplest recursion arising when assuming that the algorithm "merge sort" could merge in constant unit time, i.e., T(1):= 1, T(n):= T(floor(n/2)) + T(ceiling(n/2)) + 1. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 14 2006
%C 2n-5 counts the permutations in S_n which have zero occurrences of the pattern 312 and one occurrence of the pattern 123. - David Hoek (david.hok(AT)telia.com), Feb 28 2007
%C For n > 0: number of divisors of (n-1)th power of any squarefree semiprime: a(n) = A000005(A001248(k)^(n-1)); a(n) = A000005(A000302(n-1)) = A000005(A001019(n-1)) = A000005(A009969(n-1)) = A000005(A087752(n-1)). - _Reinhard Zumkeller_, Mar 04 2007
%C For n > 2, a(n-1) is the least integer not the sum of < n n-gonal numbers (0 allowed). - _Jonathan Sondow_, Jul 01 2007
%C A134451(a(n)) = abs(A134452(a(n))) = 1; union of A134453 and A134454. - _Reinhard Zumkeller_, Oct 27 2007
%C Numbers n such that sigma(2n) = 3*sigma(n). - _Farideh Firoozbakht_, Feb 26 2008
%C a(n) = A139391(A016825(n)) = A006370(A016825(n)). - _Reinhard Zumkeller_, Apr 17 2008
%C Number of divisors of 4^(n-1) for n > 0. - _J. Lowell_, Aug 30 2008
%C Equals INVERT transform of A078050 (signed - cf. comments); and row sums of triangle A144106. - _Gary W. Adamson_, Sep 11 2008
%C Odd numbers(n) = 2*n+1 = square pyramidal number(3*n+1) / triangular number(3*n+1). - _Pierre CAMI_, Sep 27 2008
%C A000035(a(n))=1, A059841(a(n))=0. - _Reinhard Zumkeller_, Sep 29 2008
%C Multiplicative closure of A065091. - _Reinhard Zumkeller_, Oct 14 2008
%C a(n) is also the maximum number of triangles that n+2 points in the same plane can determine. 3 points determine max 1 triangle; 4 points can give 3 triangles; 5 points can give 5; 6 points can give 7 etc. - _Carmine Suriano_, Jun 08 2009
%C Binomial transform of A130706, inverse binomial transform of A001787(without the initial 0). - _Philippe Deléham_, Sep 17 2009
%C Also the 3-rough numbers: positive integers that have no prime factors less than 3. - _Michael B. Porter_, Oct 08 2009
%C Or n without 2 as prime factor. - _Juri-Stepan Gerasimov_, Nov 19 2009
%C Given an L(2,1) labeling l of a graph G, let k be the maximum label assigned by l. The minimum k possible over all L(2,1) labelings of G is denoted by lambda(G). For n > 0, this sequence gives lambda(K_{n+1}) where K_{n+1} is the complete graph on n+1 vertices. - _K.V.Iyer_, Dec 19 2009
%C A176271 = odd numbers seen as a triangle read by rows: a(n) = A176271(A002024(n+1), A002260(n+1)). - _Reinhard Zumkeller_, Apr 13 2010
%C For n >= 1, a(n-1) = numbers k such that arithmetic mean of the first k positive integers is integer. A040001(a(n-1)) = 1. See A145051 and A040001. - _Jaroslav Krizek_, May 28 2010
%C Union of A179084 and A179085. - _Reinhard Zumkeller_, Jun 28 2010
%C For n>0, continued fraction [1,1,n] = (n+1)/a(n); e.g., [1,1,7] = 8/15. - _Gary W. Adamson_, Jul 15 2010
%C Numbers that are the sum of two sequential integers. - _Dominick Cancilla_, Aug 09 2010
%C Cf. property described by _Gary Detlefs_ in A113801: more generally, these numbers are of the form (2*h*n + (h-4)*(-1)^n - h)/4 (h and n in A000027), therefore ((2*h*n + (h-4)*(-1)^n - h)/4)^2 - 1 == 0 (mod h); in this case, a(n)^2 - 1 == 0 (mod 4). Also a(n)^2 - 1 == 0 (mod 8). - _Bruno Berselli_, Nov 17 2010
%C A004767 = a(a(n)). - _Reinhard Zumkeller_, Jun 27 2011
%C A001227(a(n)) = A000005(a(n)); A048272(a(n)) < 0. - _Reinhard Zumkeller_, Jan 21 2012
%C a(n) is the minimum number of tosses of a fair coin needed so that the probability of more than n heads is at least 1/2. In fact, Sum_{k=n+1..2n+1} Pr(k heads|2n+1 tosses) = 1/2. - _Dennis P. Walsh_, Apr 04 2012
%C A007814(a(n)) = 0; A037227(a(n)) = 1. - _Reinhard Zumkeller_, Jun 30 2012
%C 1/N (i.e., 1/1, 1/2, 1/3, ...) = Sum_{j=1,3,5,...,infinity} k^j, where k is the infinite set of constants 1/exp.ArcSinh(N/2) = convergents to barover(N). The convergent to barover(1) or [1,1,1,...] = 1/phi = 0.6180339..., whereas c.f. barover(2) converges to 0.414213..., and so on. Thus, with k = 1/phi we obtain 1 = k^1 + k^3 + k^5 + ..., and with k = 0.414213... = (sqrt(2) - 1) we get 1/2 = k^1 + k^3 + k^5 + .... Likewise, with the convergent to barover(3) = 0.302775... = k, we get 1/3 = k^1 + k^3 + k^5 + ..., etc. - _Gary W. Adamson_, Jul 01 2012
%C Conjecture on primes with one coach (A216371) relating to the odd integers: iff an integer is in A216371 (primes with one coach either of the form 4q-1 or 4q+1, (q > 0)); the top row of its coach is composed of a permutation of the first q odd integers. Example: prime 19 (q = 5), has 5 terms in each row of its coach: 19: [1, 9, 5, 7, 3] ... [1, 1, 1, 2, 4]. This is interpreted: (19 - 1) = (2^1 * 9), (19 - 9) = (2^1 * 5), (19 - 5) = (2^1 - 7), (19 - 7) = (2^2 * 3), (19 - 3) = (2^4 * 1). - _Gary W. Adamson_, Sep 09 2012
%C A005408 is the numerator 2n-1 of the term (1/m^2 - 1/n^2) = (2n-1)/(mn)^2, n = m+1, m > 0 in the Rydberg formula, while A035287 is the denominator (mn)^2. So the quotient a(A005408)/a(A035287) simulates the Hydrogen spectral series of all hydrogen-like elements. - _Freimut Marschner_, Aug 10 2013
%C This sequence has unique factorization. The primitive elements are the odd primes (A065091). (Each term of the sequence can be expressed as a product of terms of the sequence. Primitive elements have only the trivial factorization. If the products of terms of the sequence are always in the sequence, and there is a unique factorization of each element into primitive elements, we say that the sequence has unique factorization. So, e.g., the composite numbers do not have unique factorization, because for example 36 = 4*9 = 6*6 has two distinct factorizations.) - _Franklin T. Adams-Watters_, Sep 28 2013
%C These are also numbers k such that (k^k+1)/(k+1) is an integer. - _Derek Orr_, May 22 2014
%C a(n-1) gives the number of distinct sums in the direct sum {1,2,3,..,n} + {1,2,3,..,n}. For example, {1} + {1} has only one possible sum so a(0) = 1. {1,2} + {1,2} has three distinct possible sums {2,3,4} so a(1) = 3. {1,2,3} + {1,2,3} has 5 distinct possible sums {2,3,4,5,6} so a(2) = 5. - _Derek Orr_, Nov 22 2014
%C The number of partitions of 4*n into at most 2 parts. - _Colin Barker_, Mar 31 2015
%C a(n) is representable as a sum of two but no fewer consecutive nonnegative integers, e.g., 1 = 0 + 1, 3 = 1 + 2, 5 = 2 + 3, etc. (see A138591). - _Martin Renner_, Mar 14 2016
%C Unique solution a( ) of the complementary equation a(n) = a(n-1)^2 - a(n-2)*b(n-1), where a(0) = 1, a(1) = 3, and a( ) and b( ) are increasing complementary sequences. - _Clark Kimberling_, Nov 21 2017
%C Also the number of maximal and maximum cliques in the n-centipede graph. - _Eric W. Weisstein_, Dec 01 2017
%C Lexicographically earliest sequence of distinct positive integers such that the average of any number of consecutive terms is always an integer. (For opposite property see A042963.) - _Ivan Neretin_, Dec 21 2017
%C Maximum number of non-intersecting line segments between vertices of a convex (n+2)-gon. - _Christoph B. Kassir_, Oct 21 2022
%C a(n) is the number of parking functions of size n+1 avoiding the patterns 123, 132, and 231. - _Lara Pudwell_, Apr 10 2023
%C a(n) is the maximum number of triangles in planar connected graphs of triangles with n+3 nodes. - _Ya-Ping Lu_, Jun 25 2024
%D T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 2.
%D T. Dantzig, The Language of Science, 4th Edition (1954) page 276.
%D H. Doerrie, 100 Great Problems of Elementary Mathematics, Dover, NY, 1965, p. 73.
%D D. Hök, Parvisa mönster i permutationer [Swedish], (2007).
%D E. Maor, Trigonometric Delights, Princeton University Press, NJ, 1998, pp. 203-205.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H N. J. A. Sloane, <a href="/A005408/b005408.txt">Table of n, a(n) for n = 0..10000</a>
%H Ayomikun Adeniran and Lara Pudwell, <a href="https://doi.org/10.54550/ECA2023V3S3R17">Pattern avoidance in parking functions</a>, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
%H D. Applegate and J. C. Lagarias, <a href="https://doi.org/10.1016/j.jnt.2005.06.010">The 3x+1 semigroup</a>, Journal of Number Theory, Vol. 177, Issue 1, March 2006, pp. 146-159; see also the <a href="https://arxiv.org/abs/math/0411140">arXiv version</a>, arXiv:math/0411140 [math.NT], 2004-2005.
%H Paul Barry, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Barry/barry84.html">A Catalan Transform and Related Transformations on Integer Sequences</a>, J. Integer Sequ., Vol. 8 (2005), Article 05.4.5.
%H Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão and Graça Tomaz, <a href="https://www.emis.de/journals/JIS/VOL21/Falcao/falcao2.html">Combinatorial Identities Associated with a Multidimensional Polynomial Sequence</a>, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
%H Hongwei Chen, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Chen/chen78.html">Evaluations of Some Variant Euler Sums</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.3.
%H K. Ciesielski and Z. Pogoda, <a href="http://www.jstor.org/stable/27642424">On ordering the natural numbers, or the Sharkovski theorem</a>, Amer. Math. Monthly, 115 (No. 2, 2008), 158-165.
%H Mark W. Coffey, <a href="http://arxiv.org/abs/1601.01673">Bernoulli identities, zeta relations, determinant expressions, Mellin transforms, and representation of the Hurwitz numbers</a>, arXiv:1601.01673 [math.NT], 2016. See p. 35.
%H T.-X. He and L. W. Shapiro, <a href="http://dx.doi.org/10.1016/j.laa.2017.06.025">Fuss-Catalan matrices, their weighted sums, and stabilizer subgroups of the Riordan group</a>, Lin. Alg. Applic. 532 (2017) 25-41, theorem 2.5, k=4.
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=935">Encyclopedia of Combinatorial Structures 935</a>
%H Milan Janjić, <a href="https://arxiv.org/abs/1905.04465">On Restricted Ternary Words and Insets</a>, arXiv:1905.04465 [math.CO], 2019.
%H Jay Kappraff and Gary W. Adamson, <a href="https://archive.bridgesmathart.org/2001/bridges2001-67.pdf">Polygons and Chaos</a>, Bridges.
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H Franck Ramaharo, <a href="https://arxiv.org/abs/1712.06543">Enumerating the states of the twist knot</a>, arXiv:1712.06543 [math.CO], 2017.
%H Michael Somos, <a href="http://cis.csuohio.edu/~somos/rfmc.txt">Rational Function Multiplicative Coefficients</a>
%H William A. Stein, <a href="http://wstein.org/Tables/dimskg0n.gp">Dimensions of the spaces S_k(Gamma_0(N))</a>
%H William A. Stein, <a href="http://wstein.org/Tables/">The modular forms database</a>
%H Leo Tavares, <a href="/A005408/a005408.jpg">Illustration: Triangular Sides</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CentipedeGraph.html">Centipede Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Davenport-SchinzelSequence.html">Davenport-Schinzel Sequence</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GnomonicNumber.html">Gnomonic Number</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/InverseCotangent.html">Inverse Cotangent</a>,
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/InverseHyperbolicCotangent.html">Inverse Hyperbolic Cotangent</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/InverseHyperbolicTangent.html">Inverse Hyperbolic Tangent</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/InverseTangent.html">Inverse Tangent</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MaximalClique.html">Maximal Clique</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MaximumClique.html">Maximum Clique</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/NexusNumber.html">Nexus Number</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/OddNumber.html">Odd Number</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PythagoreanTriple.html">Pythagorean Triple</a>
%H Chai Wah Wu, <a href="https://arxiv.org/abs/1805.07431">Can machine learning identify interesting mathematics? An exploration using empirically observed laws</a>, arXiv:1805.07431 [cs.LG], 2018.
%H <a href="/index/Cor#core">Index entries for "core" sequences</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F a(n) = 2*n + 1. a(-1 - n) = -a(n). a(n+1) = a(n) + 2.
%F G.f.: (1 + x) / (1 - x)^2.
%F E.g.f.: (1 + 2*x) * exp(x).
%F G.f. with interpolated zeros: (x^3+x)/((1-x)^2 * (1+x)^2); e.g.f. with interpolated zeros: x*(exp(x)+exp(-x))/2. - _Geoffrey Critzer_, Aug 25 2012
%F a(n) = L(n,-2)*(-1)^n, where L is defined as in A108299. - _Reinhard Zumkeller_, Jun 01 2005
%F Euler transform of length 2 sequence [3, -1]. - _Michael Somos_, Mar 30 2007
%F G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v * (1 + 2*u) * (1 - 2*u + 16*v) - (u - 4*v)^2 * (1 + 2*u + 2*u^2). - _Michael Somos_, Mar 30 2007
%F a(n) = b(2*n + 1) where b(n) = n if n is odd is multiplicative. [This seems to say that A000027 is multiplicative? - _R. J. Mathar_, Sep 23 2011]
%F From _Hieronymus Fischer_, May 25 2007: (Start)
%F a(n) = (n+1)^2 - n^2.
%F G.f. g(x) = Sum_{k>=0} x^floor(sqrt(k)) = Sum_{k>=0} x^A000196(k). (End)
%F a(0) = 1, a(1) = 3, a(n) = 2*a(n-1) - a(n-2). - _Jaume Oliver Lafont_, May 07 2008
%F a(n) = A000330(A016777(n))/A000217(A016777(n)). - _Pierre CAMI_, Sep 27 2008
%F a(n) = A034856(n+1) - A000217(n) = A005843(n) + A000124(n) - A000217(n) = A005843(n) + 1. - _Jaroslav Krizek_, Sep 05 2009
%F a(n) = (n - 1) + n (sum of two sequential integers). - _Dominick Cancilla_, Aug 09 2010
%F a(n) = 4*A000217(n)+1 - 2*Sum_{i=1..n-1} a(i) for n > 1. - _Bruno Berselli_, Nov 17 2010
%F n*a(2n+1)^2+1 = (n+1)*a(2n)^2; e.g., 3*15^2+1 = 4*13^2. - _Charlie Marion_, Dec 31 2010
%F arctanh(x) = Sum_{n>=0} x^(2n+1)/a(n). - _R. J. Mathar_, Sep 23 2011
%F a(n) = det(f(i-j+1))_{1<=i,j<=n}, where f(n) = A113311(n); for n < 0 we have f(n)=0. - _Mircea Merca_, Jun 23 2012
%F G.f.: Q(0), where Q(k) = 1 + 2*(k+1)*x/( 1 - 1/(1 + 2*(k+1)/Q(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, May 11 2013
%F a(n) = floor(sqrt(2*A000384(n+1))). - _Ivan N. Ianakiev_, Jun 17 2013
%F a(n) = 3*A000330(n)/A000217(n), n > 0. - _Ivan N. Ianakiev_, Jul 12 2013
%F a(n) = Product_{k=1..2*n} 2*sin(Pi*k/(2*n+1)) = Product_{k=1..n} (2*sin(Pi*k/(2*n+1)))^2, n >= 0 (undefined product = 1). See an Oct 09 2013 formula contribution in A000027 with a reference. - _Wolfdieter Lang_, Oct 10 2013
%F Noting that as n -> infinity, sqrt(n^2 + n) -> n + 1/2, let f(n) = n + 1/2 - sqrt(n^2 + n). Then for n > 0, a(n) = round(1/f(n))/4. - _Richard R. Forberg_, Feb 16 2014
%F a(n) = Sum_{k=0..n+1} binomial(2*n+1,2*k)*4^(k)*bernoulli(2*k). - _Vladimir Kruchinin_, Feb 24 2015
%F a(n) = Sum_{k=0..n} binomial(6*n+3, 6*k)*Bernoulli(6*k). - _Michel Marcus_, Jan 11 2016
%F a(n) = A000225(n+1) - A005803(n+1). - _Miquel Cerda_, Nov 25 2016
%F O.g.f.: Sum_{n >= 1} phi(2*n-1)*x^(n-1)/(1 - x^(2*n-1)), where phi(n) is the Euler totient function A000010. - _Peter Bala_, Mar 22 2019
%F Sum_{n>=0} 1/a(n)^2 = Pi^2/8 = A111003. - _Bernard Schott_, Dec 10 2020
%F Sum_{n >= 1} (-1)^n/(a(n)*a(n+1)) = Pi/4 - 1/2 = 1/(3 + (1*3)/(4 + (3*5)/(4 + ... + (4*n^2 - 1)/(4 + ... )))). Cf. A016754. - _Peter Bala_, Mar 28 2024
%F a(n) = A055112(n)/oblong(n) = A193218(n+1)/Hex number(n). Compare to the Sep 27 2008 comment by Pierre CAMI. - _Klaus Purath_, Apr 23 2024
%F a(k*m) = k*a(m) - (k-1). - _Ya-Ping Lu_, Jun 25 2024
%e G.f. = q + 3*q^3 + 5*q^5 + 7*q^7 + 9*q^9 + 11*q^11 + 13*q^13 + 15*q^15 + ...
%p A005408 := n->2*n+1;
%p A005408:=(1+z)/(z-1)^2; # _Simon Plouffe_ in his 1992 dissertation
%t Table[2 n - 1, {n, 1, 50}] (* _Stefan Steinerberger_, Apr 01 2006 *)
%t Range[1, 131, 2] (* _Harvey P. Dale_, Apr 26 2011 *)
%t 2 Range[0, 20] + 1 (* _Eric W. Weisstein_, Dec 01 2017 *)
%t LinearRecurrence[{2, -1}, {1, 3}, 20] (* _Eric W. Weisstein_, Dec 01 2017 *)
%t CoefficientList[Series[(1 + x)/(-1 + x)^2, {x, 0, 20}], x] (* _Eric W. Weisstein_, Dec 01 2017 *)
%o (Magma) [ 2*n+1 : n in [0..100]];
%o (PARI) {a(n) = 2*n + 1}
%o (PARI) first(n) = Vec((1 + x)/(1 - x)^2 + O(x^n)) \\ _Iain Fox_, Dec 29 2017
%o (Haskell)
%o a005408 n = (+ 1) . (* 2)
%o a005408_list = [1, 3 ..] -- _Reinhard Zumkeller_, Feb 11 2012, Jun 28 2011
%o (Maxima) makelist(2*n+1, n, 0, 30); /* _Martin Ettl_, Dec 11 2012 */
%o (Python) a=lambda n: 2*n+1 # _Indranil Ghosh_, Jan 04 2017
%o (GAP) List([0..100],n->2*n+1); # _Muniru A Asiru_, Oct 16 2018
%o (Sage) [2*n+1 for n in range(100)] # _G. C. Greubel_, Nov 28 2018
%Y Cf. A000027, A005843, A065091.
%Y See A120062 for sequences related to integer-sided triangles with integer inradius n.
%Y Cf. A128200, A000290, A078050, A144106, A109613, A167875.
%Y Cf. A001651 (n=1 or 2 mod 3), A047209 (n=1 or 4 mod 5).
%Y Cf. A003558, A216371, A179480 (relating to the Coach theorem).
%Y Cf. A000754 (boustrophedon transform).
%K nonn,core,nice,easy
%O 0,2
%A _N. J. A. Sloane_
%E Incorrect comment and example removed by _Joerg Arndt_, Mar 11 2010
%E Peripheral comments deleted by _N. J. A. Sloane_, May 09 2022