The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005391 Number of Hamiltonian circuits on 2n X 8 rectangle.
(Formerly M5415)

%I M5415

%S 1,236,32675,4638576,681728204,102283239429,15513067188008,

%T 2365714170297014,361749878496079778,55391169255983979555,

%U 8487168277379774266411,1300854247070195164448395,199418506963731877069653608,30572953033472980838613625389

%N Number of Hamiltonian circuits on 2n X 8 rectangle.

%C Bisection (even part) of A145418. - _Joerg Arndt_, Feb 05 2014

%D T. G. Schmalz, G. E. Hite and D. J. Klein, Compact self-avoiding circuits on two-dimensional lattices, J. Phys. A 17 (1984), 445-453.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Alois P. Heinz, <a href="/A005391/b005391.txt">Table of n, a(n) for n = 1..200</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HamiltonianCycle.html">Hamiltonian Cycle</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Hamiltonian_circuit">Hamiltonian circuit</a>

%K nonn

%O 1,2

%A _N. J. A. Sloane_.

%E More terms from _Alois P. Heinz_, Feb 05 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 2 12:00 EDT 2021. Contains 346422 sequences. (Running on oeis4.)