login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of degree-n permutations of order a power of 2.
(Formerly M1293)
17

%I M1293 #45 Jul 06 2024 14:03:35

%S 1,1,2,4,16,56,256,1072,11264,78976,672256,4653056,49810432,433429504,

%T 4448608256,39221579776,1914926104576,29475151020032,501759779405824,

%U 6238907914387456,120652091860975616,1751735807564578816,29062253310781161472,398033706586943258624

%N Number of degree-n permutations of order a power of 2.

%C Differs from A053503 first at n=32. - _Alois P. Heinz_, Feb 14 2013

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

%H Alois P. Heinz, <a href="/A005388/b005388.txt">Table of n, a(n) for n = 0..200</a>

%H J. M. Møller, <a href="http://arxiv.org/abs/1502.01317">Euler characteristics of equivariant subcategories</a>, arXiv preprint arXiv:1502.01317, 2015. See page 20.

%H L. Moser and M. Wyman, <a href="http://dx.doi.org/10.4153/CJM-1955-020-0">On solutions of x^d = 1 in symmetric groups</a>, Canad. J. Math., 7 (1955), 159-168.

%H A. Recski, <a href="/A005387/a005387_1.pdf">Enumerating partitional matroids</a>, Preprint.

%H A. Recski & N. J. A. Sloane, <a href="/A005387/a005387.pdf">Correspondence, 1975</a>

%F E.g.f.: exp(Sum_{m>=0} x^(2^m)/2^m).

%F E.g.f.: 1/Product_{k>=1} (1 - x^(2*k-1))^(mu(2*k-1)/(2*k-1)), where mu() is the Moebius function. - _Seiichi Manyama_, Jul 06 2024

%p a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,

%p add(mul(n-i, i=1..2^j-1)*a(n-2^j), j=0..ilog2(n))))

%p end:

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Feb 14 2013

%t max = 23; CoefficientList[ Series[ Exp[ Sum[x^2^m/2^m, {m, 0, max}]], {x, 0, max}], x]*Range[0, max]! (* _Jean-François Alcover_, Sep 10 2013 *)

%o (Magma)

%o R<x>:=PowerSeriesRing(Rationals(), 40);

%o f:= func< x | Exp( (&+[x^(2^j)/2^j: j in [0..14]]) ) >;

%o Coefficients(R!(Laplace( f(x) ))); // _G. C. Greubel_, Nov 17 2022

%o (SageMath)

%o def f(x): return exp(sum(x^(2^j)/2^j for j in range(15)))

%o def A005388_list(prec):

%o P.<x> = PowerSeriesRing(QQ, prec)

%o return P( f(x) ).egf_to_ogf().list()

%o A005388_list(40) # _G. C. Greubel_, Nov 17 2022

%Y Cf. A000085, A001470, A001472, A053495, A053496, A053497, A053498, A053499.

%Y Cf. A053500, A053501, A053502, A053503, A053504, A053505.

%K nonn,nice,easy

%O 0,3

%A _N. J. A. Sloane_ and _J. H. Conway_