login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Hoggatt sequence with parameter d=5.
(Formerly M1867)
8

%I M1867 #61 Sep 16 2024 06:41:01

%S 1,2,8,44,310,2606,25202,272582,3233738,41454272,567709144,8230728508,

%T 125413517530,1996446632130,33039704641922,566087847780250,

%U 10006446665899330,181938461947322284,3393890553702212368,64807885247524512668,1264344439859632559216

%N Hoggatt sequence with parameter d=5.

%C Let V be the vector representation of SL(5) (of dimension 5) and let E be the exterior algebra of V (of dimension 32). Then a(n) is the dimension of the subspace of invariant tensors in the n-th tensor power of E. - _Bruce Westbury_, Feb 18 2021

%C This is the number of 5-vicious walkers (aka vicious 5-watermelons) - see Essam and Guttmann (1995). This is the 5-walker analog of A001181. - _N. J. A. Sloane_, Mar 27 2021

%D D. C. Fielder and C. O. Alford, "An investigation of sequences derived from Hoggatt sums and Hoggatt triangles", in G. E. Bergum et al., editors, Applications of Fibonacci Numbers: Proc. Third Internat. Conf. on Fibonacci Numbers and Their Applications, Pisa, Jul 25-29, 1988. Kluwer, Dordrecht, Vol. 3, 1990, pp. 77-88.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Seiichi Manyama, <a href="/A005363/b005363.txt">Table of n, a(n) for n = 0..681</a>

%H J. W. Essam and A. J. Guttmann, <a href="https://doi.org/10.1103/PhysRevE.52.5849">Vicious walkers and directed polymer networks in general dimensions</a>, Physical Review E, 52(6), (1995) pp. 5849-5862. See (60) and (63).

%H D. C. Fielder, <a href="/A005362/a005362.pdf">Letter to N. J. A. Sloane, Jun 1988</a>

%H D. C. Fielder and C. O. Alford, <a href="http://www.fq.math.ca/Scanned/27-2/fielder.pdf">On a conjecture by Hoggatt with extensions to Hoggatt sums and Hoggatt triangles</a>, Fib. Quart., 27 (1989), 160-168.

%H D. C. Fielder and C. O. Alford, <a href="/A000108/a000108_19.pdf">An investigation of sequences derived from Hoggatt Sums and Hoggatt Triangles</a>, Application of Fibonacci Numbers, 3 (1990) 77-88. Proceedings of 'The Third Annual Conference on Fibonacci Numbers and Their Applications,' Pisa, Italy, July 25-29, 1988. (Annotated scanned copy)

%H Vaclav Kotesovec, <a href="/A005366/a005366.pdf">Calculation of the asymptotic formula for the sequence A005366</a>

%F From _Richard L. Ollerton_, Sep 12 2006: (Start)

%F a(n) = Hypergeometric5F4([-4-n, -3-n, -2-n, -1-n, -n], [2,3,4,5], -1).

%F (n+4)*(n+5)^2*(n+6)*(n+7)*(n+8)*(252 +253*n +55*n^2)*a(n) = 3*(n+4)*(n+5)*(141120 + 362152*n + 373054*n^2 + 192647*n^3 + 52441*n^4 + 7161*n^5 + 385*n^6)*a(n-1) + n*(n-1)*(5738880 + 14311976*n + 14466242*n^2 + 7579175*n^3 + 2170343*n^4 + 322289*n^5 + 19415*n^6)*a(n-2) - 32*(n-1)^2*n^2*(n-2)*(n+1)*(560 + 363*n + 55*n^2)*a(n-3); a(-1)=a(0)=1, a(1)=2. (End)

%F a(n) = S(5,n) where S(d,n) is defined in A005364. - _Sean A. Irvine_, May 29 2016

%F a(n) ~ 9 * 2^(5*n + 27) / (sqrt(5) * Pi^2 * n^12). - _Vaclav Kotesovec_, Apr 01 2021

%F a(n) = Sum_{k=0..n} A056941(n, k) (row sums of triangle A056941). - _G. C. Greubel_, Nov 14 2022

%p a := n -> hypergeom([-4-n, -3-n, -2-n, -1-n, -n], [2, 3, 4, 5], -1):

%p seq(simplify(a(n)), n=0..25); # _Peter Luschny_, Feb 18 2021

%p # The following Maple program is based on Eq (60) of Essam-Guttmann (1995) and confirms that that sequence is the same as the present one. - _N. J. A. Sloane_, Mar 27 2021

%p v5 := proc(n) local t1,t2,t3,t4,t5;

%p if n=0 then 1

%p elif n=1 then 2

%p elif n=2 then 8

%p else

%p t1 := (4+n)*(5+n)^2*(6+n)*(7+n)*(8+n)*(252+253*n+55*n^2);

%p t2 := 3*(4+n)*(5+n)*(141120+362152*n + 373054*n^2+192647*n^3+52441*n^4 +7161*n^5 +385*n^6);

%p t3 := n*(1-n)*(5738880+14311976*n+14466242*n^2+7579175*n^3 +2170343*n^4+322289*n^5 + 19415*n^6);

%p t4 := 32*(2-n)*(1-n)^2*n^2*(1+n)*(560+363*n+55*n^2);

%p t5 := t2*v5(n-1)-t3*v5(n-2)+t4*v5(n-3);

%p t5/t1;

%p fi; end;

%p [seq(v5(n), n=0..20)];

%t A005363[n_]:=HypergeometricPFQ[{-4-n,-3-n,-2-n,-1-n,-n},{2,3,4,5},-1] (* _Richard L. Ollerton_, Sep 12 2006 *)

%o (Magma)

%o A056941:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..4]]) >;

%o A005363:= func< n | (&+[A056941(n,k): k in [0..n]]) >;

%o [A005363(n): n in [0..40]]; // _G. C. Greubel_, Nov 14 2022

%o (SageMath)

%o def A005363(n): return simplify(hypergeometric([-4-n, -3-n, -2-n, -1-n, -n],[2,3,4,5], -1))

%o [A005363(n) for n in range(51)] # _G. C. Greubel_, Nov 14 2022

%Y Cf. A000079, A000108, A001181, A005362, A005364, A005365, A005366, A116925.

%Y Cf. A056941.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, _Simon Plouffe_

%E More terms from _Sean A. Irvine_, May 29 2016