login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product of exponents of prime factorization of n.
(Formerly M0063)
152

%I M0063 #141 Jan 28 2024 09:02:19

%S 1,1,1,2,1,1,1,3,2,1,1,2,1,1,1,4,1,2,1,2,1,1,1,3,2,1,3,2,1,1,1,5,1,1,

%T 1,4,1,1,1,3,1,1,1,2,2,1,1,4,2,2,1,2,1,3,1,3,1,1,1,2,1,1,2,6,1,1,1,2,

%U 1,1,1,6,1,1,2,2,1,1

%N Product of exponents of prime factorization of n.

%C a(n) depends only on prime signature of n (cf. A025487, A052306). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).

%C There was a comment here that said "a(n) is the number of nilpotents elements in the ring Z/nZ", but this is false, see A003557.

%C a(n) is the number of square-full divisors of n. a(n) is also the number of divisors d of n such that d and n have the same prime factors, i.e., A007947(d) = A007947(n). - _Laszlo Toth_, May 22 2009

%C Number of divisors u of n such that u|(u^n/n). Row lengths in triangle of A284318. - _Juri-Stepan Gerasimov_, Apr 05 2017

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Daniel Forgues, <a href="/A005361/b005361.txt">Table of n, a(n) for n = 1..100000</a> (first 10000 terms from T. D. Noe)

%H Imanuel Chen and Michael Z. Spivey, <a href="http://soundideas.pugetsound.edu/summer_research/238">Integral Generalized Binomial Coefficients of Multiplicative Functions</a>, Preprint 2015; Summer Research Paper 238, Univ. Puget Sound.

%H P. Erdős and T. Motzkin, <a href="http://www.jstor.org/stable/2316593">Problem 5735</a>, Amer. Math. Monthly, 78 (1971), 680-681. (Incorrect solution!)

%H Vaclav Kotesovec, <a href="/A005361/a005361.jpg">Graph - the asymptotic ratio (100000 terms)</a>

%H J. Knopfmacher, <a href="http://dx.doi.org/10.1090/S0002-9939-1973-0327694-7">A prime-divisor function</a>, Proc. Amer. Math. Soc., 40 (1973), 373-377.

%H MathStackExchange, <a href="https://math.stackexchange.com/questions/4032015">Dirichlet series for zeta(s)*zeta(2*s)*zeta(3*s)*zeta(6*s)^(-1)</a>.

%H H. N. Shapiro, <a href="http://www.jstor.org/stable/2324350">Problem 5735</a>, Amer. Math. Monthly, 97 (1990), 937.

%H D. Suryanarayana and R. Sitaramachandra Rao, <a href="http://dx.doi.org/10.1090/S0002-9939-1972-0291104-8">The number of square-full divisors of an integer</a>, Proc. Amer. Math. Soc., Vol. 34, No. 1 (1972), pp. 79-80.

%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>

%F n = Product (p_j^k_j) -> a(n) = Product (k_j).

%F Dirichlet g.f.: zeta(s)*zeta(2s)*zeta(3s)/zeta(6s).

%F Multiplicative with a(p^e) = e. - _David W. Wilson_, Aug 01 2001

%F a(n) = Sum_{d dividing n} floor(rad(d)/rad(n)) where rad(n) is A007947. - _Enrique Pérez Herrero_, Nov 06 2009

%F For n > 1: a(n) = Product_{k=1..A001221(n)} A124010(n,k). - _Reinhard Zumkeller_, Aug 27 2011

%F a(n) = tau(n/rad(n)), where tau is A000005 and rad is A007947. - _Anthony Browne_, May 11 2016

%F a(n) = Sum_{k=1..n}(floor(cos^2(Pi*k^n/n))*floor(cos^2(Pi*n/k))). - _Anthony Browne_, May 11 2016

%F From _Antti Karttunen_, Mar 06 2017: (Start)

%F For all n >= 1, a(prime^n) = n, a(A002110(n)) = a(A005117(n)) = 1. [From Crossrefs section.]

%F a(1) = 1; for n > 1, a(n) = A067029(n) * a(A028234(n)).

%F (End)

%F Let (b(n)) be multiplicative with b(p^e) = -1 + ( (floor((e-1)/3)+floor(e/3)) mod 4 ) for p prime and e > 0, then b(n) is the Dirichlet inverse of (a(n)). - _Werner Schulte_, Feb 23 2018

%F Sum_{i=1..k} a(i) ~ (zeta(2)*zeta(3)/zeta(6)) * k (Suryanarayana and Sitaramachandra Rao, 1972). - _Amiram Eldar_, Apr 13 2020

%F More precise asymptotics: Sum_{k=1..n} a(k) ~ 315*zeta(3)*n / (2*Pi^4) + zeta(1/2)*zeta(3/2)*sqrt(n) / zeta(3) + 6*zeta(1/3)*zeta(2/3)*n^(1/3) / Pi^2 [Knopfmacher, 1973]. - _Vaclav Kotesovec_, Jun 13 2020

%p A005361 := proc(n)

%p local a, p ;

%p a := 1 ;

%p for p in ifactors(n)[2] do

%p a := a*op(2, p) ;

%p end do:

%p a ;

%p end proc:

%p seq(A005361(n),n=1..30) ; # _R. J. Mathar_, Nov 20 2012

%p # second Maple program:

%p a:= n-> mul(i[2], i=ifactors(n)[2]):

%p seq(a(n), n=1..80); # _Alois P. Heinz_, Feb 18 2020

%t Prepend[ Array[ Times @@ Last[ Transpose[ FactorInteger[ # ] ] ]&, 100, 2 ], 1 ]

%t Array[Times@@Transpose[FactorInteger[#]][[2]]&,80] (* _Harvey P. Dale_, Aug 15 2012 *)

%o (PARI) for(n=1,100, f=factor(n); print1(prod(i=1,omega(f), f[i,2]),",")) \\ edited by _M. F. Hasler_, Feb 18 2020

%o (PARI) a(n)=factorback(factor(n)[,2]) \\ _Charles R Greathouse IV_, Nov 07 2014

%o (PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - X + X^2)/(1 - X)^2)[n], ", ")) \\ _Vaclav Kotesovec_, Jun 14 2020

%o (Haskell)

%o a005361 = product . a124010_row -- _Reinhard Zumkeller_, Jan 09 2012

%o (Scheme) (define (A005361 n) (if (= 1 n) 1 (* (A067029 n) (A005361 (A028234 n))))) ;; _Antti Karttunen_, Mar 06 2017

%o (Python)

%o from math import prod

%o from sympy import factorint

%o def a(n): return prod(factorint(n).values())

%o print([a(n) for n in range(1, 91)]) # _Michael S. Branicky_, Jul 04 2022

%Y Cf. A000005, A002110, A005117 (indices of ones), A028234, A052306, A067029, A072411, A082695, A284318.

%Y Cf. A360969, A360970, A361132.

%Y Cf. A340065 (Dgf at s=2).

%K nonn,easy,nice,mult

%O 1,4

%A _Jeffrey Shallit_ and _Olivier Gérard_