login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of asymmetric planar trees with n nodes.
(Formerly M2808)
4

%I M2808 #48 Jan 31 2018 10:52:38

%S 1,1,0,0,0,1,3,9,28,85,262,827,2651,8626,28507,95393,322938,1104525,

%T 3812367,13266366,46504495,164098390,582521687,2079133141,7457788295,

%U 26872946466,97238824018,353218128299,1287657977946,4709784136316

%N Number of asymmetric planar trees with n nodes.

%C a(13) in the Labelle table is a typographical error. - _R. J. Mathar_, Feb 03 2010

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Alois P. Heinz, <a href="/A005354/b005354.txt">Table of n, a(n) for n = 0..1000</a> (first 201 terms from Vincenzo Librandi)

%H Gilbert Labelle, <a href="http://dx.doi.org/10.1016/0747-7171(92)90037-5">Counting asymmetric enriched trees</a>, J. Symbolic Comput. 14 (1992), no. 2-3, 211-242.

%H Torsten Mütze and Franziska Weber, <a href="http://arxiv.org/abs/1111.2413">Construction of 2-factors in the middle layer of the discrete cube</a>, arXiv preprint arXiv:1111.2413 [math.CO], 2011.

%H T. Mütze and F. Weber, <a href="http://dx.doi.org/10.1016/j.jcta.2012.06.005">Construction of 2-factors in the middle layer of the discrete cube</a>, Journal of Combinatorial Theory, Series A, 119(8) (2012), 1832-1855.

%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>

%F From _Christian G. Bower_, Dec 15 1999: (Start)

%F G.f.: 1+B(x)+(C(x^2)-C(x)^2)/2 where B is g.f. of A022553(n-1) and C is g.f. of A000108(n-1).

%F a(n) = A022553(n-1) - A000108(n-2)/2 - (if n is even) A000108(n/2-1)/2. (End)

%p From _R. J. Mathar_, Feb 03 2010: (Start)

%p A000108 := proc(n) binomial(2*n,n)/(n+1) ; end proc:

%p A007727 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do a := a+binomial(2*d,d)*numtheory[mobius](n/d) ; end do ; a ; end proc;

%p A022553 := proc(n) A007727(n)/2/n ; end proc:

%p A005354 := proc(n) local a; if n <=1 then 1; else a := A022553(n-1) ; a := a-A000108(n-1)/2 ; if type(n,'even') then a := a-A000108(n/2-1)/2 ; end if; a ; end if; end proc: seq(A005354(n),n=0..20) ; (End)

%t a[0] = a[1] = 1; a[n_] := DivisorSum[n-1, MoebiusMu[(n-1)/#]*Binomial[2#, #]&]/(2(n-1)) - CatalanNumber[n-1]/2 - Boole[EvenQ[n]]*CatalanNumber[n/2 - 1]/2; Table[a[n], {n, 0, 29}] (* _Jean-François Alcover_, May 09 2012, after _R. J. Mathar_, updated Jan 31 2018 *)

%Y Cf. A000108, A002995, A022553.

%K nonn,nice

%O 0,7

%A _N. J. A. Sloane_, _Simon Plouffe_, _Susanna Cuyler_

%E More terms from _Christian G. Bower_, Dec 15 1999