login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005338
Number of ways in which n identical balls can be distributed among 5 boxes in a row such that each pair of adjacent boxes contains at least 4 balls.
(Formerly M4508)
5
1, 8, 31, 85, 190, 360, 610, 956, 1415, 2005, 2745, 3655, 4756, 6070, 7620, 9430, 11525, 13931, 16675, 19785, 23290, 27220, 31606, 36480, 41875, 47825, 54365, 61531, 69360, 77890, 87160, 97210, 108081, 119815, 132455, 146045, 160630
OFFSET
8,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Philippe Flajolet, Balls and Urns, etc., A problem in submarine detection (solution to problem 68-16).
M. Hayes (proposer) and D. R. Breach (solver), A combinatorial problem, Problem 68-16, SIAM Rev. 12 (1970), 294-297.
FORMULA
G.f.: x^8*(1 + 3*x + x^2 - 11*x^5 + 7*x^6)/(1 - x)^5. - Vladeta Jovovic, Apr 13 2008
a(n) = (n^4 + 10*n^3 - 445*n^2 + 2690*n - 1656)/24 for n > 9. - Colin Barker, May 10 2012
MATHEMATICA
f[x_] := x^8*(1 + 3*x + x^2 - 11*x^5 + 7*x^6)/(1 - x)^5; Drop[ CoefficientList[ Series[f[x], {x, 0, 44}], x], 8] (* Jean-François Alcover, Oct 05 2011, after Vladeta Jovovic *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 8, 31, 85, 190, 360, 610}, 40] (* Harvey P. Dale, Aug 26 2019 *)
PROG
(Magma) I:=[1, 8, 31, 85, 190, 360, 610]; [n le 7 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, May 11 2012
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Corrected and extended by Vladeta Jovovic, Apr 13 2008
Name clarified by Alois P. Heinz, Oct 02 2017
STATUS
approved