login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of fixed points in planted trees with n nodes.
(Formerly M3282)
2

%I M3282 #21 Mar 22 2020 10:01:28

%S 0,1,0,1,1,4,6,14,28,60,125,263,558,1181,2513,5339,11392,24290,51926,

%T 111017,237757,509404,1092713,2345256,5038015,10828720,23291759,

%U 50126055,107939753,232550011,501270200,1080996244,2332221316,5033764628,10868950676,23476998980,50728408182,109649040738,237081174662,512767906801,1109354495908

%N Total number of fixed points in planted trees with n nodes.

%C From _R. J. Mathar_, Apr 13 2019: (Start)

%C The associated triangle H_{p,j}, p >= 1, 1 <= j <= p, a(n) = Sum_{j=1..p} j*H_{p,j}, row sums in A001678, starts:

%C 1;

%C 0, 0;

%C 1, 0, 0;

%C 1, 0, 0, 0;

%C 1, 0, 1, 0, 0;

%C 1, 1, 1, 0, 0, 0;

%C 2, 2, 1, 0, 1, 0, 0;

%C 1, 4, 2, 2, 1, 0, 0, 0;

%C 3, 4, 4, 5, 2, 0, 1, 0, 0;

%C 3, 7, 7, 9, 4, 4, 1, 0, 0, 0;

%C 5, 9, 15, 14, 11, 9, 3, 0, 1, 0, 0;

%C 4, 14, 23, 28, 25, 19, 7, 6, 1, 0, 0, 0;

%C 11, 15, 39, 46, 55, 38, 24, 14, 5, 0, 1, 0, 0;

%C 6, 32, 54, 86, 97, 86, 64, 36, 11, 9, 1, 0, 0, 0;

%C (End)

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H F. Harary and E. M. Palmer, <a href="https://doi.org/10.1017/S0305004100055857">Probability that a point of a tree is fixed</a>, Math. Proc. Camb. Phil. Soc. 85 (1979) 407-415.

%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>

%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>

%p Hpj := proc(Hofxy,p,j)

%p coeftayl(Hofxy,x=0,p) ;

%p coeftayl(%,y=0,j) ;

%p simplify(%) ;

%p end proc:

%p Hxy := proc(x,y,pmax,hxyinit)

%p if pmax = 0 then

%p x*y ;

%p else

%p pp := 1;

%p for p from 1 to pmax do

%p t :=1 ;

%p for j from 1 to p do

%p t := t*(1+x^p*y^j+add(x^(k*p),k=2..pmax+1))^Hpj(hxyinit,p,j) ;

%p end do:

%p pp := pp*t ;

%p end do:

%p x*y*%/(1+x*y) ;

%p end if;

%p end proc:

%p hxy := Hxy(x,y,0,0) ;

%p for pmax from 2 to 20 do

%p Hxy(x,y,pmax,hxy) ;

%p taylor(%,x=0,pmax+2) ;

%p convert(%,polynom) ;

%p taylor(%,y=0,pmax+2) ;

%p hxy := convert(%,polynom) ;

%p for p from 0 to pmax do

%p Ap := 0 ;

%p for j from 1 to p do

%p Ap := Ap+j*Hpj(hxy,p,j) ;

%p end do:

%p printf("%d,",Ap) ;

%p end do:

%p print() ;

%p end do: # _R. J. Mathar_, Apr 13 2019

%t Hpj[Hofxy_, p_, j_] := SeriesCoefficient[SeriesCoefficient[Hofxy, {x, 0, p}] , {y, 0, j}];

%t Hxy [x_, y_, pMax_, hxyinit_] := If [pMax == 0, x y, pp = 1; For[p = 1, p <= pMax, p++, t = 1; For[j = 1, j <= p, j++, t = t(1 + x^p y^j + Sum[x^(k*p), {k, 2, pMax + 1}])^Hpj[hxyinit, p, j]]; pp = pp t]; x*y* pp/(1 + x y)];

%t hxy = Hxy[x, y, 0, 0];

%t Reap[For[pMax = 2, pMax <= terms - 1, pMax++, Print["pMax = ", pMax]; sx = Series[Hxy[x, y, pMax, hxy], {x, 0, pMax + 2}] // Normal; sy = Series[sx, {y, 0, pMax + 2}]; hxy = sy // Normal; For[p = 0, p <= pMax, p++, Ap = 0; For[j = 1, j <= p, j++, Ap = Ap + j Hpj[hxy, p, j]]; If[pMax == terms - 1, Print[Ap]; Sow[Ap]]]]][[2, 1]] (* _Jean-François Alcover_, Mar 22 2020, after _R. J. Mathar_ *)

%Y Cf. A005200.

%K nonn,easy

%O 1,6

%A _N. J. A. Sloane_

%E More terms from _R. J. Mathar_, Apr 13 2019